Is Xbar - Ybar an Unbiased Estimator of mu_1 - mu_2?

  • Thread starter exitwound
  • Start date
In summary: To be completely honest, I don't even know what the 'result' is.I'm sorry, I was asking what the point of the problem was. I understand the definitions, but I don't understand what we're trying to achieve. I tried to do the work, but I'm lost on how to get from one step to the next.I'm sorry, I was asking what the point of the problem was. I understand the definitions, but I don't understand what we're trying to achieve. I tried to do the work, but I'm lost on how to get from one step to the next.No, you don't understand the definitions. You wouldn't be asking for help if you did.The problem is asking
  • #1
exitwound
292
1
I have a terrible teacher and have to teach myself out of the book and don't understand this.

Homework Statement



Male verbal IQs
117 103 121 112 120 132 113 117 132
149 125 131 136 107 108 113 136 114

Female Verbal IQs
114 102 113 131 124 117 120 90
114 109 102 114 127 127 103

Denote the male values by X1, X2...Xm and female values by Y1, Y2...Yn. Suppose that the Xi's constitute a random sample froma distribution with mean mu_1 and standard deviation sigma_1 and the Yi's form a random sample distribution (independent from the Xi's) with mean mu_2 and standard deviation sigma_2.

a.) Use rules of expected vale to show that Xbar - Ybar is an unbiased estimator of mu_1 - mu_2.

The Attempt at a Solution



I know that bias is the difference between the Expected value of the estimator and the value of the parameter. However, I am completely lost on how I can figure this out if I don't know the true means of the IQs.

E(Xbar - Ybar) = E(Xbar) - E(Ybar) = (1/m)(X1+X2+...Xm) - (1/n)(Y1+Y2+...Yn)

I have no idea what this means or where to go.
 
Physics news on Phys.org
  • #2
Exitwound said:
Suppose that the Xi's constitute a random sample froma distribution with mean mu_1 and standard deviation sigma_1 and the Yi's form a random sample distribution (independent from the Xi's) with mean mu_2 and standard deviation sigma_2.
You are given the means and standard deviations of the two sets of IQ data.
 
  • #3
I know that E(Xbar) = E(X) = mu_1 and E(Ybar) = E(Y) = mu_2. E(Xbar-Ybar) = mu_1 - mu_2.

I don't know what it all means.
 
  • #4
You pretty much have it, but are having trouble putting the pieces together.

[tex]E(\bar{X} - \bar{Y}) = E(\bar{X}) - E(\bar{Y}) = \mu_1 - \mu_2[/tex]

So, on average, the statistic [tex]E(\bar{X} - \bar{Y})[/tex] can be expected to be equal to [itex]\mu_1 - \mu_2[/itex].

The definition (slightly paraphrased) for "unbiased estimator" in one of my books is this:
Let Y1, Y2, ..., Yn be a random sample from a distribution. An estimator W = h(Y1, Y2, ..., Yn) is said to be unbiased (for [itex]\theta[/itex]) if E(W) = [itex]\theta[/itex], for all [itex]\theta[/itex].
 
Last edited:
  • #5
So I'm looking for the difference in the expectation of the estimator from what the estimator actually measures...

If Xbar - Ybar is mu1 - m2, and E(Xbar - Ybar) = mu1 - m2, then what exactly is this saying? I don't understand what's going on regarding the samples and distributions. I can't seem to find any good resources with pictures or graphs.
 
  • #6
exitwound said:
So I'm looking for the difference in the expectation of the estimator from what the estimator actually measures...
No, you're calculating the expectation of the statistic [tex]\bar{X} - \bar{Y}[/tex].
exitwound said:
If Xbar - Ybar is mu1 - m2, and E(Xbar - Ybar) = mu1 - m2,
No, [tex]\bar{X} - \bar{Y} \neq \mu_1 - \mu_2[/tex]

but if you took a large number of samples from the two populations, the differences of the sample averages --

[tex]\bar{X} - \bar{Y} [/tex]

-- would cluster around [tex]\mu_1 - \mu_2[/tex].

exitwound said:
then what exactly is this saying? I don't understand what's going on regarding the samples and distributions. I can't seem to find any good resources with pictures or graphs.

One of my two references, Intro to Mathematical Statistics, 4th Ed., by Hogg & Craig, doesn't have a single picture or graph.
 
  • #7
exitwound said:
I have a terrible teacher and have to teach myself out of the book and don't understand this.

Homework Statement



Male verbal IQs
117 103 121 112 120 132 113 117 132
149 125 131 136 107 108 113 136 114

Female Verbal IQs
114 102 113 131 124 117 120 90
114 109 102 114 127 127 103

Denote the male values by X1, X2...Xm and female values by Y1, Y2...Yn. Suppose that the Xi's constitute a random sample froma distribution with mean mu_1 and standard deviation sigma_1 and the Yi's form a random sample distribution (independent from the Xi's) with mean mu_2 and standard deviation sigma_2.

a.) Use rules of expected vale to show that Xbar - Ybar is an unbiased estimator of mu_1 - mu_2.

The Attempt at a Solution



I know that bias is the difference between the Expected value of the estimator and the value of the parameter. However, I am completely lost on how I can figure this out if I don't know the true means of the IQs.

E(Xbar - Ybar) = E(Xbar) - E(Ybar) = (1/m)(X1+X2+...Xm) - (1/n)(Y1+Y2+...Yn)

I have no idea what this means or where to go.
You've almost got it.

There's a small error though.

Xbar = (1/m)(X1 + ... + Xm) so E(Xbar) = (1/m)[E(X1) + ... + E(Xm)]. This is because of linearity: E(aX + bY) = aE(X) +bE(Y).

Then the line: "Suppose that the Xi's constitute a random sample froma distribution with mean mu_1" says the sample is identically distributed.

Therefore E(X1) = E(X2) = ... = E(Xm). So E(Xbar) = (1/m)[m * E(X1)], and E(X1) = mu_1 (in fact the expected value of any of the X's is mu_1 because they have the same distribution).

Use the same argument for the Y's, and you get the result.
One of my two references, Intro to Mathematical Statistics, 4th Ed., by Hogg & Craig, doesn't have a single picture or graph.
That's probably the most hardcore (but best) "introductory" stats textbook in print.
 
  • #8
...and you get the result.

To be completely honest, I don't even know what the 'result' is. I'm lost on what we're actually trying to achieve. Proving that I'm using an unbiased estimator is given in the text I have and above as E(W) = 0, but I don't really understand what that means other than the results from the sample will have the same mean as the population itself.
 
  • #9
E(W) = 0 would be true only if the population means (mu1 and mu2) of the two populations were equal, and this is not given in the problem.

I would advise you to spend more time on learning the definitions. If there is something that you don't understand about the definition, ask your instructor. If you do that, go in with specific questions about what you are having problems with, not vague statements such as "I don't get it" or "I'm lost" etc.
 
  • #10
The instructor is Chinese, reads lectures that her former partner wrote (who was Greek), and does examples straight out of the book with no variation. There's absolutely nothing she can offer in English that would help...which is why I asked for pictures or graphs or something other than math lingo. I'm not a math major and can't think in abstracts. I seriously don't understand how the bias of a estimator relates to the estimates being done. Thanks for shoving me aside tho. It really helps.
 
  • #11
exitwound said:
The instructor is Chinese, reads lectures that her former partner wrote (who was Greek), and does examples straight out of the book with no variation.
OK, so she's a lousy teacher.
exitwound said:
There's absolutely nothing she can offer in English that would help
How do you know that? Have you gone to her office during her office hour (I assume she has regular office hours) to ask for clarification on some questions you have?
exitwound said:
...which is why I asked for pictures or graphs or something other than math lingo. I'm not a math major and can't think in abstracts.
Are you assuming that only math types can think in abstracts? Regarding pictures and graphs, the higher you go in mathematics, the less likely you are to see pictures and graphs. This is why I said to focus on definitions, since they are crucial in mathematics.
exitwound said:
I seriously don't understand how the bias of a estimator relates to the estimates being done. Thanks for shoving me aside tho. It really helps.
I certainly appreciate your gratitude for the time I spent posting four responses to your question.
 
  • #12
exitwound said:
To be completely honest, I don't even know what the 'result' is. I'm lost on what we're actually trying to achieve. Proving that I'm using an unbiased estimator is given in the text I have and above as E(W) = 0, but I don't really understand what that means other than the results from the sample will have the same mean as the population itself.
Definition: The function [tex]g[/tex] is an unbiased estimator of [tex]\theta[/tex] if [tex]E(g)=\theta[/tex].

What this means intuitively is that the estimator is on average equal to the true value of what it's trying to estimate. Being unbiased is just a property (amongst many others) that good estimators should have. But this intuitive meaning has no place in a mathematical proof, like this question, although it's probably something that's good to know so you have a feeling for what's going on.

An estimator is *any* function of the observed values (that's the definition). So we could say that [tex]4+\frac{1}{m}\sum_{i=1}^mX_i[/tex] is an estimator for the mean. But this would be a terrible estimator, because it is biased in the sense that it will on average overestimate the mean by 4. So we would like an unbiased estimator instead.

You want to prove that the function [tex]\bar{X}-\bar{Y}=\frac{1}{m}\sum_{i=1}^mX_i - \frac{1}{n}\sum_{i=1}^nY_i [/tex] is an unbiased estimator for [tex]\mu_1-\mu_2[/tex].

Want to show: [tex]E(\bar{X}-\bar{Y}) = \mu_1-\mu_2[/tex]

Proof:
[tex]E(\bar{X}-\bar{Y}) = E(\bar{X})-E(\bar{Y})[/tex] because E(aX+bY) = aE(X) + bE(Y)

[tex]=E(\frac{1}{m}\sum_{i=1}^mX_i)-E(\frac{1}{n}\sum_{i=1}^nY_i)[/tex] (substituting Xbar and Ybar in)

[tex]=\frac{1}{m}\sum_{i=1}^mE(X_i)-\frac{1}{n}\sum_{i=1}^nE(Y_i)[/tex] using E(aX+bY) = aE(X) + bE(Y) again

[tex]=\frac{1}{m}\sum_{i=1}^m\mu_1-\frac{1}{n}\sum_{i=1}^n\mu_2[/tex] because all the X's are identically distributed (as explained in my last post), so they all have the same expected value: namely mu_1, same with the Y's.

[tex]=\frac{1}{m}(m\mu_1)-\frac{1}{n}(n\mu_2)[/tex] (now your just summing up constants)

[tex]= \mu_1 - \mu_2[/tex] which is what we wanted to show.
 
Last edited:

FAQ: Is Xbar - Ybar an Unbiased Estimator of mu_1 - mu_2?

What is an unbiased estimator?

An unbiased estimator is a statistical calculation that accurately estimates the true value of a population parameter without any systematic error or bias. It means that on average, the estimator will produce estimates that are equal to the true value.

What does it mean to prove an estimator is unbiased?

To prove that an estimator is unbiased means to demonstrate through mathematical or statistical methods that the estimator produces unbiased estimates, meaning that the expected value of the estimator is equal to the true value of the population parameter.

How do you show that an estimator is unbiased?

In order to show that an estimator is unbiased, one must use statistical theory and methods to calculate the expected value of the estimator and compare it to the true value of the population parameter. If the expected value is equal to the true value, then the estimator is considered unbiased.

Why is it important to have an unbiased estimator?

An unbiased estimator is important because it provides accurate estimates of population parameters, which are crucial for making informed decisions and drawing conclusions in scientific research. Biased estimators can lead to incorrect conclusions and potentially harmful actions.

What are some common techniques for proving an estimator is unbiased?

Some common techniques for proving an estimator is unbiased include using mathematical proofs, statistical simulations, and theoretical justifications based on known properties of estimators. These techniques can help demonstrate that the estimator produces unbiased estimates under various conditions and assumptions.

Similar threads

Back
Top