- #1
alexmahone
- 304
- 0
By estimating the coefficients of the Laurent Series, prove that if $z_0$ is an isolated
singularity of $f$, and if $(z−z_0)f(z)\rightarrow 0$ as $z\rightarrow z_0$, then $z_0$ is removable.
My attempt
$\displaystyle f(z)=\sum\limits_{n=0}^\infty a_n(z-z_0)^n+\frac{b_1}{z-z_0}+\frac{b_2}{(z-z_0)^2}+\ldots+\frac{b_n}{(z-z_0)^n}+\ldots$
in a punctured disk $0<|z-z_0|<R_2$.
So, $\displaystyle(z-z_0)f(z)=\sum\limits_{n=0}^\infty a_n(z-z_0)^{n+1}+b_1+\frac{b_2}{z-z_0}+\ldots+\frac{b_n}{(z-z_0)^{n-1}}+\ldots$
in $0<|z-z_0|<R_2$.
How do I proceed?
singularity of $f$, and if $(z−z_0)f(z)\rightarrow 0$ as $z\rightarrow z_0$, then $z_0$ is removable.
My attempt
$\displaystyle f(z)=\sum\limits_{n=0}^\infty a_n(z-z_0)^n+\frac{b_1}{z-z_0}+\frac{b_2}{(z-z_0)^2}+\ldots+\frac{b_n}{(z-z_0)^n}+\ldots$
in a punctured disk $0<|z-z_0|<R_2$.
So, $\displaystyle(z-z_0)f(z)=\sum\limits_{n=0}^\infty a_n(z-z_0)^{n+1}+b_1+\frac{b_2}{z-z_0}+\ldots+\frac{b_n}{(z-z_0)^{n-1}}+\ldots$
in $0<|z-z_0|<R_2$.
How do I proceed?