- #1
mnb96
- 715
- 5
Hello,
let's suppose we are given a set [itex]A[/itex], a (semi)group [itex]S[/itex] and we define a (semi)group-action [itex]t:A \times S \rightarrow A[/itex].
Now, if I define a bijection [itex]f:A \rightarrow B[/itex], is it possible to show that there always exists some other (semi)group S' and some action [tex]t':B \times S' \rightarrow B[/tex] such that:
[tex]\forall a \in A[/tex] and [tex]\forall s \in S[/tex]
[tex]f(t(a,s))=t'(f(a),s')[/tex]
for some [tex]s' \in S'[/tex]
let's suppose we are given a set [itex]A[/itex], a (semi)group [itex]S[/itex] and we define a (semi)group-action [itex]t:A \times S \rightarrow A[/itex].
Now, if I define a bijection [itex]f:A \rightarrow B[/itex], is it possible to show that there always exists some other (semi)group S' and some action [tex]t':B \times S' \rightarrow B[/tex] such that:
[tex]\forall a \in A[/tex] and [tex]\forall s \in S[/tex]
[tex]f(t(a,s))=t'(f(a),s')[/tex]
for some [tex]s' \in S'[/tex]
Last edited: