- #1
mathmari
Gold Member
MHB
- 5,049
- 7
Hey! 
Let $E/F$ be a field extension, $S\subseteq E$ and let $t\in E$ be algebraic over $F(S)$.
I want to show that there are distinct $s_1, \ldots , s_r\in S$, different from $t$, such that $\{s_1, \ldots , s_r, t\}$ is an algebraically dependent set over $F$.
I have done the following:
We have that $t\in E$ is algebraic over $F(S)$, i.e., there is a non-zero $f\in F(S)[x]$ such that $f(t)=0$, right? (Wondering)
To show that $\{s_1, \ldots , s_r, t\}$ is an algebraically dependent set over $F$, we have to show that there is a non-zero polynomial $g\in F[x_1, \ldots , x_r, y]$ such that $g(s_1, \ldots , s_r, t)=0$, right? How can we use the polynomial $f$ for that? (Wondering)
Let $E/F$ be a field extension, $S\subseteq E$ and let $t\in E$ be algebraic over $F(S)$.
I want to show that there are distinct $s_1, \ldots , s_r\in S$, different from $t$, such that $\{s_1, \ldots , s_r, t\}$ is an algebraically dependent set over $F$.
I have done the following:
We have that $t\in E$ is algebraic over $F(S)$, i.e., there is a non-zero $f\in F(S)[x]$ such that $f(t)=0$, right? (Wondering)
To show that $\{s_1, \ldots , s_r, t\}$ is an algebraically dependent set over $F$, we have to show that there is a non-zero polynomial $g\in F[x_1, \ldots , x_r, y]$ such that $g(s_1, \ldots , s_r, t)=0$, right? How can we use the polynomial $f$ for that? (Wondering)