IV characteristic equation of triple junction solar cell

In summary: I think I might have been given a simpler solution.In summary, the student is trying to find an equation for current in terms of bandgap energy and voltage across each subcell. They are also trying to find an equation for current in terms of voltage and bandgap across each subcell. They are using Kirchhoff's laws and the equation for current in terms of voltage and bandgap across each subcell.
  • #1
harikasri
4
0

Homework Statement


The given quantities are the shunt resistances across each of the 3 diode junctions,assume them to be Rsh1,Rsh2,Rsh3; Tunnel diode resistances as Rt1 and Rt2, Photocurrent for each of the junction be Ip1,Ip2,Ip3 and bandgap of each subcell be Eg1,Eg2,Eg3 are given.Let V & I be the voltage and current across the complete triple junction cell.
Now I need to find out (I-current) equation in terms of bandgap of each subcell and also it is a function of exponential terms(e^(function of V)) (diode current). I also need to find the voltage V interms of bandgap of subcells.



Homework Equations





The Attempt at a Solution



I could get the current equation with the diode current( I=Is*e^(qVd/kT)) where Vd is the voltage across the diode (say for 1 subcell). The Vd is not given and I need to represent it interms of overall voltage V across the subcell.That is e^(function of V).
 

Attachments

  • The circuit is.docx
    62.5 KB · Views: 255
Last edited:
Physics news on Phys.org
  • #2
Welcome to Physics Forums!

Since no one else has responded, I'll give it a try. Do you have some way to relate the bandgap energy Eg to the diode voltage Vd for one subcell? (Review your class notes or textbook, if needed.)

Also, you might as well simplify by combining the three series resistors Rt1, Rt2, and Rsel.
 
Last edited:
  • #3
Sir, I require the current equation in the following generalised form: I= exp(q*function(V)/kT)+linear first order function of V+constant. The diode voltage of each subcell is to be represented in terms of overall voltage V and the final equation should be independent of diode voltages of each subcell(sayVd1,Vd2,Vd3). All these should be represented in V only.
Sir, I don't need my equation in terms of bandgap now.
Thank you for your help
 
  • #4
Sorry about the delay in responding.

Without actually solving this myself, it looks like you should apply Kirchhoff's laws to this circuit. In other words:

Total voltage V is the sum of voltages across each series branch -- express that in an equation
For each subcell, the total current I is the sum of currents through each element in the subcell -- express that in 3 equations, one equation for each subcell.

However . . . the current-voltage relation for each diode is an exponential function, which complicates things when it is combined in parallel with a shunt resistor. Is it possible you have been given a simpler I-V relation for a standard diode, that might be used here?
 
  • #5
sir, I have tried solving it using KCL and KVL and I have assumed that the voltage available across each subcell is divided in the same ratio of their bandgaps. that is v1=(eg1/(eg1+eg2+eg3))*total voltage available for all the three cells given the voltage drop across the resistances are subtracted from the total voltage(V). I know that V=(bandgap/charge). Then
v1=(eg1/(eg1+eg2+eg3))*(V-IRse-IRt1-IRt2). similarly for the others v2 and v3.
substituted these values and found the characteristic equation. I=∑_(i=1)^3▒〖[I_pi+(V_i/R_shi )-〖I_si (e〗^(((qV_i)/kT) )-1)]〗 i=subcell .
Thank you sir
 

FAQ: IV characteristic equation of triple junction solar cell

What is the IV characteristic equation of a triple junction solar cell?

The IV characteristic equation of a triple junction solar cell is a mathematical representation of the relationship between the current (I) and voltage (V) output of the solar cell. It takes into account the various factors that affect the performance of the cell, such as the bandgap energies of the different junctions and the cell's efficiency.

How is the IV characteristic equation of a triple junction solar cell derived?

The IV characteristic equation is derived by combining the current-voltage equations of each individual junction within the triple junction solar cell. This involves considering the series and parallel connections between the junctions, as well as taking into account the effects of recombination and resistance within the cell.

What factors influence the shape of the IV curve of a triple junction solar cell?

The shape of the IV curve is influenced by several factors, including the bandgap energies of the individual junctions, the illumination intensity, the temperature, and the series and shunt resistances of the cell. These factors can cause the curve to shift, flatten, or become asymmetrical.

How does the IV characteristic equation help in analyzing the performance of a triple junction solar cell?

The IV characteristic equation allows scientists to predict the output of a triple junction solar cell under different operating conditions. By analyzing the curve, they can determine the maximum power point, the efficiency of the cell, and any potential issues that may be affecting its performance.

Can the IV characteristic equation be used for other types of solar cells?

Yes, the IV characteristic equation can be adapted for other types of solar cells, such as single junction or tandem solar cells. However, the specific equations and parameters used may differ depending on the structure and materials of the cell.

Similar threads

Replies
6
Views
2K
Replies
7
Views
2K
Replies
12
Views
2K
Replies
5
Views
7K
Replies
4
Views
2K
Back
Top