- #1
Prove It
Gold Member
MHB
- 1,465
- 24
View attachment 5590
5. To start with, we should work out the x intercepts, they are x = -2 and x = 2. That means your region in the first quadrant will be integrated over $\displaystyle \begin{align*} x \in [0,2] \end{align*}$.
You should note that rotating the function $\displaystyle \begin{align*} y = 4 - x^2 \end{align*}$ about the line $\displaystyle \begin{align*} y = -\frac{1}{2} \end{align*}$ will give the exact same volume as rotating $\displaystyle \begin{align*} y = \frac{9}{2} - x^2 \end{align*}$ around the x axis. We would then subtract the volume of the region bounded by the line $\displaystyle \begin{align*} y = \frac{1}{2} \end{align*}$ rotated about the x axis.
So our required volume is
$\displaystyle \begin{align*} V &= \int_0^2{ \pi\,\left( \frac{9}{2} - x^2 \right) ^2 \,\mathrm{d}x } - \int_0^2{ \pi\,\left( \frac{1}{2} \right) ^2\,\mathrm{d}x } \\ &= \pi \int_0^2{ \left[ \left( \frac{9}{2} - x^2 \right) ^2 - \left( \frac{1}{2} \right) ^2 \right] \,\mathrm{d}x } \\ &= \pi \int_0^2{ \left( \frac{81}{4} - 9\,x^2 + x^4 - \frac{1}{4} \right) \,\mathrm{d}x } \\ &= \pi \int_0^2{ \left( 20 - 9\,x^2 + x^4 \right) \,\mathrm{d}x } \\ &= \pi \,\left[ 20\,x - 3\,x^3 + \frac{x^5}{5} \right] _0^2 \\ &= \pi \,\left[ \left( 20 \cdot 2 - 3 \cdot 2^3 + \frac{2^5}{5} \right) - \left( 20 \cdot 0 - 3 \cdot 0^3 + \frac{0^5}{5} \right) \right] \\ &= \pi \, \left( 40 - 24 + \frac{32}{5} - 0 \right) \\ &= \pi \, \left( 16 + \frac{32}{5} \right) \\ &= \frac{112\,\pi}{5}\,\textrm{units}^3 \\ &\approx 70.371\,68 \, \textrm{units}^3 \end{align*}$I will do the second question when I have a spare moment.
5. To start with, we should work out the x intercepts, they are x = -2 and x = 2. That means your region in the first quadrant will be integrated over $\displaystyle \begin{align*} x \in [0,2] \end{align*}$.
You should note that rotating the function $\displaystyle \begin{align*} y = 4 - x^2 \end{align*}$ about the line $\displaystyle \begin{align*} y = -\frac{1}{2} \end{align*}$ will give the exact same volume as rotating $\displaystyle \begin{align*} y = \frac{9}{2} - x^2 \end{align*}$ around the x axis. We would then subtract the volume of the region bounded by the line $\displaystyle \begin{align*} y = \frac{1}{2} \end{align*}$ rotated about the x axis.
So our required volume is
$\displaystyle \begin{align*} V &= \int_0^2{ \pi\,\left( \frac{9}{2} - x^2 \right) ^2 \,\mathrm{d}x } - \int_0^2{ \pi\,\left( \frac{1}{2} \right) ^2\,\mathrm{d}x } \\ &= \pi \int_0^2{ \left[ \left( \frac{9}{2} - x^2 \right) ^2 - \left( \frac{1}{2} \right) ^2 \right] \,\mathrm{d}x } \\ &= \pi \int_0^2{ \left( \frac{81}{4} - 9\,x^2 + x^4 - \frac{1}{4} \right) \,\mathrm{d}x } \\ &= \pi \int_0^2{ \left( 20 - 9\,x^2 + x^4 \right) \,\mathrm{d}x } \\ &= \pi \,\left[ 20\,x - 3\,x^3 + \frac{x^5}{5} \right] _0^2 \\ &= \pi \,\left[ \left( 20 \cdot 2 - 3 \cdot 2^3 + \frac{2^5}{5} \right) - \left( 20 \cdot 0 - 3 \cdot 0^3 + \frac{0^5}{5} \right) \right] \\ &= \pi \, \left( 40 - 24 + \frac{32}{5} - 0 \right) \\ &= \pi \, \left( 16 + \frac{32}{5} \right) \\ &= \frac{112\,\pi}{5}\,\textrm{units}^3 \\ &\approx 70.371\,68 \, \textrm{units}^3 \end{align*}$I will do the second question when I have a spare moment.