Jamal's question via email about solving a system with a PLU decomposition.

In summary, the PLU decomposition of the coefficient matrix A can be used to solve the linear system by using forward and back substitution to find the values of $\displaystyle \begin{align*} \mathbf{g} \end{align*}$ and then using these values to solve for $\displaystyle \begin{align*} \mathbf{x} \end{align*}$ in $\displaystyle \begin{align*} U\,\mathbf{x} = \mathbf{g} \end{align*}$, giving the solution to the system as $\displaystyle \begin{align*} \mathbf{x} = \left[ \begin{matrix} \phantom{-}10 \\ \
  • #1
Prove It
Gold Member
MHB
1,465
24
Consider the linear system $\displaystyle \begin{align*} A\,\mathbf{x} = \mathbf{b} \end{align*}$. The coefficient matrix A has the following PLU decomposition:

$\displaystyle \begin{align*} A = \left[ \begin{matrix} 0 & 1 & 0 \\ 0 & 0 & 1 \\ 1 & 0 & 0 \end{matrix} \right] \left[ \begin{matrix} \phantom{-}1 & \phantom{-}0 & 0 \\ -\frac{1}{3} & \phantom{-}1 & 0 \\ \phantom{-}\frac{1}{3} & -\frac{1}{4} & 1 \end{matrix} \right] \left[ \begin{matrix} -3 & \phantom{-}4 & 0 \\ \phantom{-}0 & -\frac{8}{3} & 1 \\ \phantom{-}0 & \phantom{-}0 & \frac{5}{4} \end{matrix} \right] \end{align*}$

and $\displaystyle \begin{align*} \mathbf{b} = \left[ \begin{matrix} -3 \\ -5 \\ -18 \end{matrix} \right] \end{align*}$.

Use the PLU decomposition of the coefficient matrix A to find the solution of the linear system $\displaystyle \begin{align*} A\,\mathbf{x} = \mathbf{b} \end{align*}$.

To start with, since $\displaystyle \begin{align*} A = P\,L\,U \end{align*}$, that means in our system we have $\displaystyle \begin{align*} P\,L\,U\,\mathbf{x} = \mathbf{b} \end{align*}$. Normally to solve for $\displaystyle \begin{align*} \mathbf{x} \end{align*}$ we would use inverses, so we would premultiply both sides by $\displaystyle \begin{align*} P^{-1} \end{align*}$, but luckily since $\displaystyle \begin{align*} P \end{align*}$ is orthogonal, $\displaystyle \begin{align*} P^{-1} = P^T \end{align*}$, so this gives $\displaystyle \begin{align*} L\,U\,\mathbf{x} = P^T\,\mathbf{b} \end{align*}$. Notice that

$\displaystyle \begin{align*} P^T\,\mathbf{b} &= \left[ \begin{matrix} 0 & 0 & 1 \\ 1 & 0 & 0 \\ 0 & 1 & 0 \end{matrix} \right] \left[ \begin{matrix} -3 \\ -5 \\ -18 \end{matrix} \right] \\ &= \left[ \begin{matrix} -18 \\ -3 \\ -5 \end{matrix} \right] \end{align*}$

Now since L and U are triangular matrices, it makes solving systems easier as they can be solved directly with forward or back substitution. If we were to multiply $\displaystyle \begin{align*} U\,\mathbf{x} \end{align*}$, we would get a 3x1 column matrix, which we can call $\displaystyle \begin{align*} \mathbf{g} \end{align*}$, so the system reduces to $\displaystyle \begin{align*} L\,\mathbf{g} = P^T\,\mathbf{b} \end{align*}$ and $\displaystyle \begin{align*} U\,\mathbf{x} = \mathbf{g} \end{align*}$. Solving for $\displaystyle \begin{align*} \mathbf{g} \end{align*}$...

$\displaystyle \begin{align*} \left[ \begin{matrix} \phantom{-}1 & \phantom{-}0 & 0 \\ -\frac{1}{3} & \phantom{-}1 & 0 \\ \phantom{-}\frac{1}{3} & -\frac{1}{4} & 1 \end{matrix} \right] \left[ \begin{matrix} g_1 \\ g_2 \\ g_3 \end{matrix} \right] &= \left[ \begin{matrix} -18 \\ -3 \\ -5 \end{matrix} \right] \end{align*}$

So we can see:

$\displaystyle \begin{align*} g_1 &= -18 \\ \\ -\frac{1}{3}\,g_1 + g_2 &= -3 \\ 6 + g_2 &= -3 \\ g_2 &= -9 \\ \\ \frac{1}{3}\,g_1 - \frac{1}{4}\,g_2 + g_3 &= -5 \\ -6 + \frac{9}{4} + g_3 &= -5 \\ -\frac{15}{4} + g_3 &= -\frac{20}{4} \\ g_3 &= -\frac{5}{4} \end{align*}$

and now using this to solve for $\displaystyle \begin{align*} \mathbf{x} \end{align*}$ in $\displaystyle \begin{align*} U\,\mathbf{x} = \mathbf{g} \end{align*}$ gives

$\displaystyle \begin{align*} \left[ \begin{matrix} -3 & \phantom{-}4 & 0 \\ \phantom{-}0 & -\frac{8}{3} & 1 \\ \phantom{-}0 & \phantom{-}0 & \frac{5}{4} \end{matrix} \right] \left[ \begin{matrix} x_1 \\ x_2 \\ x_3 \end{matrix} \right] &= \left[ \begin{matrix} -18 \\ -9 \\ -\frac{5}{4} \end{matrix} \right] \end{align*}$

So we can see:

$\displaystyle \begin{align*} \frac{5}{4}\,x_3 &= -\frac{5}{4} \\ x_3 &= -1 \\ \\ -\frac{8}{3}\,x_2 + x_3 &= -9 \\ -\frac{8}{3}\,x_2 - 1 &= -9 \\ -\frac{8}{3}\,x_2 &= -8 \\ x_2 &= 3 \\ \\ -3\,x_1 + 4\,x_2 &= -18 \\ -3\,x_1 + 12 &= -18 \\ -3\,x_1 &= -30 \\ x_1 &= 10 \end{align*}$

Thus the solution to the system is $\displaystyle \begin{align*} \mathbf{x} = \left[ \begin{matrix} \phantom{-}10 \\ \phantom{-}3 \\ -1 \end{matrix} \right] \end{align*}$.
 

FAQ: Jamal's question via email about solving a system with a PLU decomposition.

What is a PLU decomposition?

A PLU decomposition is a method used to solve systems of linear equations. It involves breaking down a matrix into three separate matrices: P, L, and U. P is a permutation matrix, L is a lower triangular matrix with 1s on the diagonal, and U is an upper triangular matrix. The solution to the system can then be found by solving for the variables in the simplified form of the matrix equation, P*L*x = b, where b is the solution vector.

Why is a PLU decomposition useful for solving systems of equations?

A PLU decomposition is useful because it can simplify the process of solving systems of equations, especially when dealing with large matrices. It also allows for faster computation since the matrices are broken down into simpler forms. Additionally, the permutation matrix P can help to avoid division by zero errors.

How does a PLU decomposition differ from other methods of solving systems of equations?

Unlike other methods such as Gaussian elimination or Cramer's rule, a PLU decomposition does not involve any multiplications or divisions, which can lead to rounding errors. It also does not require the use of inverse matrices, making it more efficient for solving systems with multiple solutions or when the inverse does not exist.

What are the steps involved in performing a PLU decomposition?

The steps for performing a PLU decomposition are as follows:1. Start with the original matrix A and create a copy of it.2. Use Gaussian elimination to transform the first column of the copied matrix into a column of zeros, keeping track of the operations performed.3. Repeat this process for the remaining columns, using the modified matrix from the previous step.4. The resulting matrix will be the upper triangular matrix U.5. Create a permutation matrix P by keeping track of the row swaps performed in step 2.6. Create a lower triangular matrix L by using the opposite operations performed in step 2 on the identity matrix.7. The PLU decomposition is then complete, with P, L, and U matrices satisfying the equation P*L*A = U.

Are there any limitations or special cases to consider when using a PLU decomposition?

One limitation of a PLU decomposition is that it can only be used for square matrices. It is also important to check for a non-zero determinant before performing the decomposition, as a matrix with a determinant of 0 will not have a unique solution. Additionally, if the matrix A is not invertible, the PLU decomposition will not be possible.

Similar threads

Replies
1
Views
5K
Replies
1
Views
4K
Replies
1
Views
6K
Replies
4
Views
10K
Replies
1
Views
1K
Replies
1
Views
9K
Back
Top