MHB James' question about Normal Distribution

AI Thread Summary
The discussion focuses on calculating probabilities related to a normal distribution with a mean (μ) of 5 and a standard deviation (σ) of 2. For part (a), it confirms that Pr(X < 3) corresponds to Pr(Z < -1), resulting in a value of a = -1. In part (b), it finds that Pr(X > 8) translates to Pr(Z > 1.5), leading to b = 1.5. Lastly, part (c) establishes that Pr(X > 6) equals Pr(Z < -0.5), giving c = -0.5. The calculations are validated through a clear derivation process, emphasizing the relationship between X and Z.
Prove It
Gold Member
MHB
Messages
1,434
Reaction score
20
normal distribution.jpg

(a) We are told $\displaystyle \begin{align*} \textrm{Pr}\,\left( X < 3 \right) = \textrm{Pr}\,\left( Z < a \right) \end{align*}$, so if $\displaystyle \begin{align*} x = 3 \end{align*}$ and $\displaystyle \begin{align*} z = a \end{align*}$ then we have

$\displaystyle \begin{align*} z &= \frac{x - \mu}{\sigma} \\ a &= \frac{3 - 5}{2} \\ a &= \frac{-2}{\phantom{-}2} \\ a &= -1 \end{align*}$(b) We are told $\displaystyle \begin{align*} \textrm{Pr}\,\left( X > 8 \right) = \textrm{Pr}\,\left( Z > b \right) \end{align*}$, so if $\displaystyle \begin{align*} x = 8 \end{align*}$ then we have

$\displaystyle \begin{align*} z &= \frac{x - \mu}{\sigma} \\ b &= \frac{8 - 5}{2} \\ b &= \frac{3}{2} \\ b &= 1.5 \end{align*}$(c) We are told $\displaystyle \begin{align*} \textrm{Pr}\,\left( X > 6 \right) = \textrm{Pr}\,\left( Z < c \right) \end{align*}$, so by symmetry, $\displaystyle \begin{align*} \textrm{Pr}\,\left( X > 6 \right) = \textrm{Pr}\,\left( Z > -c \right) \end{align*}$, and thus if $\displaystyle \begin{align*} x = 6 \end{align*}$ then

$\displaystyle \begin{align*} z &= \frac{x - \mu}{\sigma} \\ -c &= \frac{6 - 5}{2} \\ -c &= \frac{1}{2} \\ c &= -\frac{1}{2} \end{align*}$
 
Last edited by a moderator:
Mathematics news on Phys.org
Prove It said:
View attachment 309785
(a) We are told $\displaystyle \begin{align*} \textrm{Pr}\,\left( X < 3 \right) = \textrm{Pr}\,\left( Z < a \right) \end{align*}$, so if $\displaystyle \begin{align*} x = 3 \end{align*}$ and $\displaystyle \begin{align*} z = a \end{align*}$ then we have

$\displaystyle \begin{align*} z &= \frac{x - \mu}{\sigma} \\ a &= \frac{3 - 5}{2} \\ a &= \frac{-2}{\phantom{-}2} \\ a &= -1 \end{align*}$(b) We are told $\displaystyle \begin{align*} \textrm{Pr}\,\left( X > 8 \right) = \textrm{Pr}\,\left( Z > b \right) \end{align*}$, so if $\displaystyle \begin{align*} x = 8 \end{align*}$ then we have

$\displaystyle \begin{align*} z &= \frac{x - \mu}{\sigma} \\ b &= \frac{8 - 5}{2} \\ b &= \frac{3}{2} \\ b &= 1.5 \end{align*}$(c) We are told $\displaystyle \begin{align*} \textrm{Pr}\,\left( X > 6 \right) = \textrm{Pr}\,\left( Z < c \right) \end{align*}$, so by symmetry, $\displaystyle \begin{align*} \textrm{Pr}\,\left( X > 6 \right) = \textrm{Pr}\,\left( Z > -c \right) \end{align*}$, and thus if $\displaystyle \begin{align*} x = 6 \end{align*}$ then

$\displaystyle \begin{align*} z &= \frac{x - \mu}{\sigma} \\ -c &= \frac{6 - 5}{2} \\ -c &= \frac{1}{2} \\ c &= -\frac{1}{2} \end{align*}$
Your answers look fine but I wouldn't have done things as you did.
You're given that ##\mu = 5## and ##\sigma = 2##, so ##Z = \frac{X - \mu}\sigma##. Substituting for the given parameters, we have ##Z = \frac{X - 5}2 \Rightarrow X = 2Z + 5##.

For part a, ##Pr(X < 3) = Pr(2Z + 5 < 3) = Pr(2z < -2) = Pr(Z < -1)##, so ##a = -1##, same answer that you gave, but probably cleaner in its derivation. The other two parts are done similarly.
 
  • Like
Likes Greg Bernhardt and Euge
Seemingly by some mathematical coincidence, a hexagon of sides 2,2,7,7, 11, and 11 can be inscribed in a circle of radius 7. The other day I saw a math problem on line, which they said came from a Polish Olympiad, where you compute the length x of the 3rd side which is the same as the radius, so that the sides of length 2,x, and 11 are inscribed on the arc of a semi-circle. The law of cosines applied twice gives the answer for x of exactly 7, but the arithmetic is so complex that the...
Thread 'Video on imaginary numbers and some queries'
Hi, I was watching the following video. I found some points confusing. Could you please help me to understand the gaps? Thanks, in advance! Question 1: Around 4:22, the video says the following. So for those mathematicians, negative numbers didn't exist. You could subtract, that is find the difference between two positive quantities, but you couldn't have a negative answer or negative coefficients. Mathematicians were so averse to negative numbers that there was no single quadratic...
Thread 'Unit Circle Double Angle Derivations'
Here I made a terrible mistake of assuming this to be an equilateral triangle and set 2sinx=1 => x=pi/6. Although this did derive the double angle formulas it also led into a terrible mess trying to find all the combinations of sides. I must have been tired and just assumed 6x=180 and 2sinx=1. By that time, I was so mindset that I nearly scolded a person for even saying 90-x. I wonder if this is a case of biased observation that seeks to dis credit me like Jesus of Nazareth since in reality...

Similar threads

Replies
1
Views
10K
Replies
2
Views
11K
Replies
1
Views
11K
Replies
2
Views
6K
Replies
4
Views
11K
Replies
2
Views
5K
Replies
1
Views
6K
Replies
1
Views
10K
Replies
4
Views
11K
Back
Top