Jamie's question at Yahoo Answers regarding an indefinite integral

In summary: Now, note that$\displaystyle \begin{align*} \cosh{(t)} = \frac{e^t + e^{-t}}{2} \quad \left( = \frac{e^{2t} + 1}{2e^t} \right) \quad \textrm{arcosh}\, { \left( x \right) } = \ln{(x + \sqrt{x^2 - 1})} \end{align*}$and so we have$\displaystyle \begin{align*} \frac{3}{2} \ln{ \left| x^2 + 3x + 1 \right| } - \frac{\
  • #1
MarkFL
Gold Member
MHB
13,288
12
Here is the question:

Integrate (3x + 2)/(x^2+3x+1) dx?

Please tell me the name of the way you did it, for ex. Start with integration by parts, or substitution.

I got to the Integral of 1-(3u+2)/(u^2+3u+1)du where u = tanx

I have posted a link there to this thread so the OP can view my work.
 
Mathematics news on Phys.org
  • #2
Hello Jamie,

We are given to evaluate:

\(\displaystyle I=\int\frac{3x+2}{x^2+3x+1}\,dx\)

I would look at the partial fraction decomposition of the integrand. Application of the quadratic formula gives us the roots of the denominator as:

\(\displaystyle x=\frac{-3\pm\sqrt{5}}{2}\)

Hence, we may state:

\(\displaystyle x^2+3x+1=\frac{1}{4}\left(2x+3-\sqrt{5} \right)\left(2x+3+\sqrt{5} \right)\)

And so the integrand may be expressed as:

\(\displaystyle \frac{4(3x+2)}{\left(2x+3-\sqrt{5} \right)\left(2x+3+\sqrt{5} \right)}\)

Thus, we may assume the partial fraction of this integrand will take the form:

\(\displaystyle \frac{4(3x+2)}{\left(2x+3-\sqrt{5} \right)\left(2x+3+\sqrt{5} \right)}=\frac{A}{2x+3-\sqrt{5}}+\frac{B}{2x+3+\sqrt{5}}\)

Using the Heaviside cover-up method, we find:

\(\displaystyle A=\frac{4\left(3\left(\dfrac{-3+\sqrt{5}}{2} \right)+2 \right)}{2\left(\dfrac{-3+\sqrt{5}}{2} \right)+3+\sqrt{5}}=3-\sqrt{5}\)

\(\displaystyle B=\frac{4\left(3\left(\dfrac{-3-\sqrt{5}}{2} \right)+2 \right)}{2\left(\dfrac{-3-\sqrt{5}}{2} \right)+3-\sqrt{5}}=3+\sqrt{5}\)

And so we find:

\(\displaystyle \frac{4(3x+2)}{\left(2x+3-\sqrt{5} \right)\left(2x+3+\sqrt{5} \right)}=\frac{3-\sqrt{5}}{2x+3-\sqrt{5}}+\frac{3+\sqrt{5}}{2x+3+\sqrt{5}}\)

And we may now state:

\(\displaystyle I=\frac{3-\sqrt{5}}{2}\int\frac{2}{2x+3-\sqrt{5}}\,dx+\frac{3+\sqrt{5}}{2}\int\frac{2}{2x+3+\sqrt{5}}\,dx\)

Using the integration rule:

\(\displaystyle \int\frac{du}{u+a}\,du=\ln|u+a|+C\)

we find:

\(\displaystyle I=\frac{3-\sqrt{5}}{2}\ln|2x+3-\sqrt{5}|+\frac{3+\sqrt{5}}{2}\ln|2x+3+\sqrt{5}|+C\)

\(\displaystyle I=\frac{1}{2}\left((3-\sqrt{5})\ln|2x+3-\sqrt{5}|+(3+\sqrt{5})\ln|2x+3+\sqrt{5}| \right)+C\)

And in conclusion, we may now state:

\(\displaystyle \int\frac{3x+2}{x^2+3x+1}\,dx=\frac{1}{2}\left((3-\sqrt{5})\ln|2x+3-\sqrt{5}|+(3+\sqrt{5})\ln|2x+3+\sqrt{5}| \right)+C\)
 
  • #3
MarkFL said:
Here is the question:
I have posted a link there to this thread so the OP can view my work.

When I look at integration problems, the first thing I always look for are simple substitutions...

$\displaystyle \begin{align*} \int{\frac{3x + 2}{x^2 + 3x + 1}\,dx} &= 3\int{\frac{x + \frac{2}{3}}{x^2 + 3x + 1} \, dx} \\ &= \frac{3}{2} \int{ \frac{2x + \frac{4}{3}}{x^2 + 3x + 1} \, dx } \\ &= \frac{3}{2} \int{\frac{2x + 3 - \frac{5}{3}}{x^2 + 3x + 1}\,dx} \\ &= \frac{3}{2} \int{ \frac{2x + 3}{x^2 + 3x + 1}\,dx } - \frac{3}{2}\int{\frac{\frac{5}{3}}{x^2 + 3x + 1} \, dx} \\ &= \frac{3}{2} \int{ \frac{2x + 3}{x^2 + 3x + 1}\, dx} - \frac{5}{2} \int{ \frac{1}{x^2 + 3x + \left( \frac{3}{2} \right) ^2 - \left( \frac{3}{2} \right) ^2 + 1 } \, dx} \\ &= \frac{3}{2} \int{ \frac{2x + 3}{x^2 + 3x + 1} \, dx} - \frac{5}{2} \int{ \frac{1}{ \left( x + \frac{3}{2} \right) ^2 - \frac{5}{4} } \, dx} \end{align*}$

Now making the substitutions $\displaystyle \begin{align*} u = x^2 + 3x + 1 \implies du = \left( 2x + 3 \right) \, dx \end{align*}$ and $\displaystyle \begin{align*} x + \frac{3}{2} = \frac{\sqrt{5}}{2}\cosh{(t)} \implies dx = \frac{\sqrt{5}}{2}\sinh{(t)}\,dt \end{align*}$ and we get

$\displaystyle \begin{align*} \frac{3}{2} \int{ \frac{2x + 3}{x^2 + 3x + 1} \, dx} - \frac{5}{2} \int{ \frac{1}{ \left( x + \frac{3}{2} \right) ^2 - \frac{5}{4} } \, dx} &= \frac{3}{2} \int{ \frac{1}{u}\,du } - \frac{5}{4} \int{ \frac{1}{\left[ \frac{\sqrt{5}}{2} \cosh{(t)} \right] ^2 - \frac{5}{4}} \, \frac{\sqrt{5}}{2}\sinh{(t)}\,dt } \\ &= \frac{3}{2} \ln{|u|} - \frac{5\sqrt{5}}{8} \int{ \frac{\sinh{(t)}}{\frac{5}{4} \left[ \cosh^2{(t)} - 1 \right]}\,dt } \\ &= \frac{3}{2} \ln{ \left| x^2 + 3x + 1 \right| } - \frac{\sqrt{5}}{2}\int{ \frac{\sinh{(t)}}{\sinh{(t)}}\,dt } \\ &= \frac{3}{2}\ln{ \left| x^2 + 3x + 1 \right| } - \frac{\sqrt{5}}{2} \int{ 1 \, dt} \\ &= \frac{3}{2} \ln{ \left| x^2 + 3x + 1 \right| } - \frac{\sqrt{5}}{2} t + C \\ &= \frac{3}{2} \ln{ \left| x^2 + 3x + 1 \right| } - \frac{\sqrt{5}}{2} \,\textrm{arcosh}\, { \left[ \frac{\sqrt{5} \, \left( 2x + 3 \right) }{5} \right] } + C \end{align*}$
 

FAQ: Jamie's question at Yahoo Answers regarding an indefinite integral

What is an indefinite integral?

An indefinite integral is a mathematical concept that represents the antiderivative of a given function. It is used to find the original function when only its derivative is known.

How do you solve an indefinite integral?

To solve an indefinite integral, you must use integration techniques such as substitution, integration by parts, or trigonometric substitution. These techniques allow you to find the antiderivative of the given function.

What is the difference between definite and indefinite integrals?

The main difference between definite and indefinite integrals is that definite integrals have specific limits of integration, while indefinite integrals do not. In other words, definite integrals give a numerical value, while indefinite integrals represent a family of functions.

Can indefinite integrals be solved without limits of integration?

Yes, indefinite integrals can be solved without limits of integration. However, the result will be a general solution, as opposed to a specific numerical value. This general solution can then be used to find the value of the definite integral by plugging in the limits of integration.

Why are indefinite integrals important in mathematics and science?

Indefinite integrals are important in mathematics and science because they allow us to find the original function from its derivative. This is useful in various applications, such as finding the position from the velocity function in physics or finding the growth rate from the population function in biology. Indefinite integrals also play a crucial role in the Fundamental Theorem of Calculus, which connects the concepts of integration and differentiation.

Back
Top