A Jaynes-Cummings Density Operator Evolution

stephen8686
Messages
42
Reaction score
5
TL;DR Summary
I do not understand the optical bloch equations and the Lindblad master equation. Are they not stating the same thing?
I am studying two level atoms interacting with fields in order to study Dicke Superradiance.
From Loudon's book, the Optical Bloch Equations for a two level atom interacting with a field say (with rotating wave approx):

$$\frac{d\rho_{22}}{dt}=- \frac{d\rho_{11}}{dt} = -\frac{1}{2} iV(e^{i\Delta \omega t}\rho_{12}-e^{-i\Delta \omega t}\rho_{21})$$
and
$$ \frac{d\rho_{12}}{dt}= \frac{d\rho_{21}^*}{dt} = \frac{1}{2}iVe^{-i\Delta\omega t}(\rho_{11}-\rho_{22}) $$

I have also seen the Lindblad master equation, given by:
$$ \frac{d}{dt}\hat{\rho} = \frac{1}{i\hbar} [\hat{H},\hat{\rho}] + \kappa \hat{L}[\hat{a}]\hat{\rho} + \sum^N_{j=1} \gamma \hat{L}[\hat{\sigma}_j^-]\hat{\rho} + \frac{1}{2T_2}\hat{L}[\hat{\sigma}^z_j]\hat{\rho}+ w\hat{L}[\hat{\sigma}_j^+]\hat{\rho} $$

So if the optical bloch equations already give the time evolution for all of the elements of the density operator matrix, why is the master equation important? Is it just easier to implement because it is one equation rather than two coupled ones, or is there a more important difference between these two approaches?
 
Physics news on Phys.org
I think your first set of equations doesn't contain spontaneous emission while the Lindblad equation does. Compare your notes with this:
https://www.ifsc.usp.br/~strontium/Teaching/Material2020-1 SFI5814 Atomicamolecular/Anderson - Monograph - Bloch equations.pdf

Generally speaking, the Lindblad equation is used for open quantum systems and includes terms which lead to decoherence and dissipation. If you start with a pure state, this kind of time evolution usually leads to a mixed state. This can't happen under the unitary dynamics of isolated quantum systems which is represented by the first term of the RHS of the Lindblad equation you have written (the commutator term).
 
Insights auto threads is broken atm, so I'm manually creating these for new Insight articles. Towards the end of the first lecture for the Qiskit Global Summer School 2025, Foundations of Quantum Mechanics, Olivia Lanes (Global Lead, Content and Education IBM) stated... Source: https://www.physicsforums.com/insights/quantum-entanglement-is-a-kinematic-fact-not-a-dynamical-effect/ by @RUTA
I am reading WHAT IS A QUANTUM FIELD THEORY?" A First Introduction for Mathematicians. The author states (2.4 Finite versus Continuous Models) that the use of continuity causes the infinities in QFT: 'Mathematicians are trained to think of physical space as R3. But our continuous model of physical space as R3 is of course an idealization, both at the scale of the very large and at the scale of the very small. This idealization has proved to be very powerful, but in the case of Quantum...
Thread 'Lesser Green's function'
The lesser Green's function is defined as: $$G^{<}(t,t')=i\langle C_{\nu}^{\dagger}(t')C_{\nu}(t)\rangle=i\bra{n}C_{\nu}^{\dagger}(t')C_{\nu}(t)\ket{n}$$ where ##\ket{n}## is the many particle ground state. $$G^{<}(t,t')=i\bra{n}e^{iHt'}C_{\nu}^{\dagger}(0)e^{-iHt'}e^{iHt}C_{\nu}(0)e^{-iHt}\ket{n}$$ First consider the case t <t' Define, $$\ket{\alpha}=e^{-iH(t'-t)}C_{\nu}(0)e^{-iHt}\ket{n}$$ $$\ket{\beta}=C_{\nu}(0)e^{-iHt'}\ket{n}$$ $$G^{<}(t,t')=i\bra{\beta}\ket{\alpha}$$ ##\ket{\alpha}##...
Back
Top