- #1
toothpaste666
- 516
- 20
Homework Statement
- The joint probability density function of X and Y is given by
f(x,y)=(6/7)(x^2+ xy/2) , 0<x<1, 0<y<2.
(a) Find the pdf of X.
(b) Find the cdf of X.
(c) FindP(X<.5).
(d) Determine the conditional pdf of Y given X = x.
The Attempt at a Solution
a) the pdf is what is stated in the probem, that P(x,y) = (6/7)(x^2+ xy/2) , 0<x<1, 0<y<2. and P(x,y) = 0 elsewhere
b)
[itex] F(x,y) = \frac{6}{7} \int_0^Y \int_0^X(x^2 + \frac{xy}{2})dxdy [/itex]
[itex] = \frac{6}{7} \int_0^Y (\frac{X^3}{3} + \frac{X^2y}{4})dy [/itex]
[itex] = \frac{6}{7} (\frac{YX^3}{3} + \frac{X^2Y^2}{8})[/itex]
c)
[itex] \frac{6}{7} \int_0^2 \int_0^.5(x^2 + \frac{xy}{2})dxdy [/itex]
[itex] = \frac{6}{7} \int_0^2 (\frac{(.5)^3}{3} + \frac{(.5)^2y}{4})dy [/itex]
[itex] = \frac{6}{7} (\frac{(2)(.5)^3}{3} + \frac{(.5)^2(2)^2}{8})[/itex]
d) fy(y|x) = f(x,y)/fx(x)
[itex] fx(x) = \frac{6}{7}\int_0^2(x^2 + \frac{xy}{2})dy [/itex]
[itex] fx(x) = \frac{6}{7}(2x^2 + x) [/itex]
fy(y|x) = f(x,y)/fx(x) =
[itex] \frac{(6/7)(x^2+ xy/2)}{(6/7)(2x^2 + x)} [/itex]
[itex] = \frac{x(x+ y/2)}{x(2x + 1)} [/itex]
[itex] = \frac{(x+ y/2)}{(2x + 1)} [/itex]Is this correct?