- #1
- 14,323
- 6,805
Hi,
I am a quantum physicist who needs a practical help from mathematicians.
The physical problem that I have can be reduced to the following mathematical problem:
Assume that we have two correlated variables a and b. Assume that we know all conditional probabilities
P(a|b), P(b|a)
for all possible values of the variables a and b.
What I want to know are all joint probabilities P(a,b). However, a priori they are not given. I want to ask the following:
What is the best I can conclude about P(a,b) from knowledge of P(a|b), P(b|a)?
Are there special cases (except the trivial case in which a and b are independent) in which P(a,b) can be determined uniquely?
Any further suggestions?
Thank you in advance!
I am a quantum physicist who needs a practical help from mathematicians.
The physical problem that I have can be reduced to the following mathematical problem:
Assume that we have two correlated variables a and b. Assume that we know all conditional probabilities
P(a|b), P(b|a)
for all possible values of the variables a and b.
What I want to know are all joint probabilities P(a,b). However, a priori they are not given. I want to ask the following:
What is the best I can conclude about P(a,b) from knowledge of P(a|b), P(b|a)?
Are there special cases (except the trivial case in which a and b are independent) in which P(a,b) can be determined uniquely?
Any further suggestions?
Thank you in advance!