MHB Jon feafe's questions at Yahoo Answers regarding volumes by slicing

  • Thread starter Thread starter MarkFL
  • Start date Start date
  • Tags Tags
    Volumes
AI Thread Summary
The discussion revolves around solving calculus problems related to finding volumes using the method of slicing. The first problem involves an elliptical base defined by the equation 16x² + 25y² = 400, with cross-sections as isosceles right triangles, leading to a calculated volume of 320/3. The second problem features a parabolic base defined by y = 3 - 2x², with square cross-sections, resulting in a volume of 9. Detailed calculations for both problems are provided, demonstrating the integration process and application of geometric principles. The thread includes a link for further reference, but the original question has since been deleted from Yahoo! Answers.
MarkFL
Gold Member
MHB
Messages
13,284
Reaction score
12
Here are the questions:

I need calculus math help?


Find the volume V of the described solid S.
The base of S is an elliptical region with boundary curve 16x^2 + 25y^2 = 400. Cross-sections perpendicular to the x-axis are isosceles right triangles with hypotenuse in the base.

Find the volume V of the described solid S.
The base of S is the region enclosed by the parabola
y = 3 - 2x^2
and the x−axis. Cross-sections perpendicular to the y−axis are squares.

I have posted a link there to this thread so the OP can view my work.

edit: This question has since been deleted at Yahoo! Answers.
 
Mathematics news on Phys.org
Re: jon feafe's questions at Yahoo! Questions regarding volumes by slicing

Hello jon feafe,

1.) We are given the boundary of the base:

$$16x^2+25y^2=400$$

To express this curve in standard form, we may divide through by $400$ to obtain:

$$\frac{x^2}{5^2}+\frac{y^2}{4^2}=1$$

We can see now that our limits of integration will be from $-5$ to $5$.

The volume of an arbitrary slice is:

$$dV=\frac{1}{2}bh\,dx$$

Since the slice has faces which are isosceles right triangles, we know $b=h$, so we have:

$$dV=\frac{1}{2}b^2\,dx$$

If we let $h$ be the hypotenuse, by Pythagoras we may write:

$$b^2+b^2=h^2$$

$$b^2=\frac{1}{2}h^2$$

Thus, we have:

$$dV=\frac{1}{4}h^2\,dx$$

Now, we see that we must have:

$$h=2y=\frac{8}{5}\sqrt{25-x^2}$$

Hence:

$$dV=\frac{16}{25}\left(25-x^2 \right)\,dx$$

Summing the slices, we may write:

$$V=\frac{16}{25}\int_{-5}^5 25-x^2\,dx$$

Using the even-function rule, this becomes:

$$V=\frac{32}{25}\int_{0}^5 25-x^2\,dx$$

Applying the FTOC, we obtain:

$$V=\frac{32}{25}\left[25x-\frac{1}{3}x^3 \right]_0^5=\frac{32}{5^2}\cdot\frac{2\cdot5^3}{3}=\frac{320}{3}$$

2.) The volume of and arbistrary square slice of side length $s$ is:

$$dV=s^2\,dy$$

where:

$$s^2=(2x)^2=4x^2=6-2y=2(3-y)$$

Hence:

$$dV=2(3-y)\,dy$$

Summing the slices, we have:

$$V=2\int_0^3 3-y\,dy$$

Applying the FTOC, we obtain:

$$V=2\left[3y-\frac{1}{2}y^2 \right]_0^3=2\cdot\frac{9}{2}=9$$
 
Thread 'Video on imaginary numbers and some queries'
Hi, I was watching the following video. I found some points confusing. Could you please help me to understand the gaps? Thanks, in advance! Question 1: Around 4:22, the video says the following. So for those mathematicians, negative numbers didn't exist. You could subtract, that is find the difference between two positive quantities, but you couldn't have a negative answer or negative coefficients. Mathematicians were so averse to negative numbers that there was no single quadratic...
Insights auto threads is broken atm, so I'm manually creating these for new Insight articles. In Dirac’s Principles of Quantum Mechanics published in 1930 he introduced a “convenient notation” he referred to as a “delta function” which he treated as a continuum analog to the discrete Kronecker delta. The Kronecker delta is simply the indexed components of the identity operator in matrix algebra Source: https://www.physicsforums.com/insights/what-exactly-is-diracs-delta-function/ by...
Thread 'Unit Circle Double Angle Derivations'
Here I made a terrible mistake of assuming this to be an equilateral triangle and set 2sinx=1 => x=pi/6. Although this did derive the double angle formulas it also led into a terrible mess trying to find all the combinations of sides. I must have been tired and just assumed 6x=180 and 2sinx=1. By that time, I was so mindset that I nearly scolded a person for even saying 90-x. I wonder if this is a case of biased observation that seeks to dis credit me like Jesus of Nazareth since in reality...
Back
Top