JustCurious' question at Yahoo Answers regarding a mathematical model

AI Thread Summary
To determine the continuous payment rate required to pay off an $8,000 car loan at a 10% annual interest rate compounded continuously over three years, a differential equation model is utilized. The model is expressed as dL/dt = rL - k, where L is the loan balance, r is the interest rate, and k is the payment rate. By solving the initial value problem and applying integration techniques, the payment rate k is derived. Substituting the known values into the equation yields a required annual payment rate of approximately $3,086.64. This calculation provides a clear financial strategy for managing the loan repayment effectively.
MarkFL
Gold Member
MHB
Messages
13,284
Reaction score
12
Here is the question:

Differential modeling help?

A college grad. borrows $8000 dollars for a car. The lender charges interest at an annual rate of 10%. Assuming interest is compounded continuously and that the borrower makes payments continuously at a constant annual rate of k, determine the payment rate k that is required to pay off the loan in 3 years.

I have posted a link there to this topic so the OP can see my work.
 
Mathematics news on Phys.org
Hello JustCurious,

If we let $L$ be the balance in dollars left on the loan at time $t$ in years, and $r$ be the annual interest rate, then from the given information, we may model the loan balance with the following IVP:

$$\frac{dL}{dt}=rL-k$$ where $$L(0)=L_0$$

Separating variables, and switching dummy variables of integration to allow using the boundaries as limits, we obtain:

$$\int_{L_0}^L\frac{1}{ru-k}\,du=\int_0^t\,dv$$

Applying the anti-derivative form of the FTOC, we get:

$$\ln\left|\frac{rL-k}{rL_0-k} \right|=rt$$

Converting from logarithmic to exponential form, we have:

$$\frac{rL-k}{rL_0-k}=e^{rt}$$

Solving for $k$, there results:

$$k=\frac{r\left(L_0e^{rt}-L \right)}{e^{rt}-1}$$

Plugging in the desired data:

$$r=\frac{1}{10},\,L_0=8000,\,t=3,\,L=0$$

we obtain:

$$k=\frac{800}{1-e^{-\frac{3}{10}}}\approx3086.636730808066$$

Hence, we find that the annual rate of repayment is about $3,086.64.
 
Seemingly by some mathematical coincidence, a hexagon of sides 2,2,7,7, 11, and 11 can be inscribed in a circle of radius 7. The other day I saw a math problem on line, which they said came from a Polish Olympiad, where you compute the length x of the 3rd side which is the same as the radius, so that the sides of length 2,x, and 11 are inscribed on the arc of a semi-circle. The law of cosines applied twice gives the answer for x of exactly 7, but the arithmetic is so complex that the...
Thread 'Imaginary Pythagoras'
I posted this in the Lame Math thread, but it's got me thinking. Is there any validity to this? Or is it really just a mathematical trick? Naively, I see that i2 + plus 12 does equal zero2. But does this have a meaning? I know one can treat the imaginary number line as just another axis like the reals, but does that mean this does represent a triangle in the complex plane with a hypotenuse of length zero? Ibix offered a rendering of the diagram using what I assume is matrix* notation...
Fermat's Last Theorem has long been one of the most famous mathematical problems, and is now one of the most famous theorems. It simply states that the equation $$ a^n+b^n=c^n $$ has no solutions with positive integers if ##n>2.## It was named after Pierre de Fermat (1607-1665). The problem itself stems from the book Arithmetica by Diophantus of Alexandria. It gained popularity because Fermat noted in his copy "Cubum autem in duos cubos, aut quadratoquadratum in duos quadratoquadratos, et...
Back
Top