- #1
OhNoYaDidn't
- 25
- 0
I am given the following set of 4x4 matrices. How can i justify that they form a basis for the Lie Algebra of the group SO(4)? I know that they must be real matrices, and [itex]AA^{T}=\mathbb{I}[/itex], and the [itex]detA = +-1.[/itex] Do i show that the matrices are linearly independent, verify these properties, and so they are a basis? Why are they 6 elements?
[tex]
_{A_1}=\begin{pmatrix}
0 &0 &0 &0 \\
0 & 0 & 1 & 0 \\
0& -1 &0 &0 \\
0& 0& 0 & 0
\end{pmatrix}
,\\
\
_{A_2}=\begin{pmatrix}
0 &0 &-1 &0 \\
0 & 0 & 0 & 0 \\
1& 0 &0 &0 \\
0& 0& 0 & 0
\end{pmatrix}
,\\
_{A_3}=\begin{pmatrix}
0 &-1 &0 &0 \\
1 & 0 & 0 & 0 \\
0& 0 &0 &0 \\
0& 0& 0 & 0
\end{pmatrix}
\\
_{B_1}=\begin{pmatrix}
0 &0 &0 &-1 \\
0 & 0 & 0 & 0 \\
0& 0 &0 &0 \\
1& 0& 0 & 0
\end{pmatrix}
,\\
_{B_2}=\begin{pmatrix}
0 &0 &0 &0 \\
0 & 0 & 0 & -1 \\
0& 0 &0 &0 \\
0& 1& 0 & 0
\end{pmatrix}
,\\
_{B_3}=\begin{pmatrix}
0 &0 &0 &0 \\
0 & 0 & 0 & 0 \\
0& 0 &0 &1 \\
0& 0& -1 & 0
\end{pmatrix}
[/tex]
[tex]
_{A_1}=\begin{pmatrix}
0 &0 &0 &0 \\
0 & 0 & 1 & 0 \\
0& -1 &0 &0 \\
0& 0& 0 & 0
\end{pmatrix}
,\\
\
_{A_2}=\begin{pmatrix}
0 &0 &-1 &0 \\
0 & 0 & 0 & 0 \\
1& 0 &0 &0 \\
0& 0& 0 & 0
\end{pmatrix}
,\\
_{A_3}=\begin{pmatrix}
0 &-1 &0 &0 \\
1 & 0 & 0 & 0 \\
0& 0 &0 &0 \\
0& 0& 0 & 0
\end{pmatrix}
\\
_{B_1}=\begin{pmatrix}
0 &0 &0 &-1 \\
0 & 0 & 0 & 0 \\
0& 0 &0 &0 \\
1& 0& 0 & 0
\end{pmatrix}
,\\
_{B_2}=\begin{pmatrix}
0 &0 &0 &0 \\
0 & 0 & 0 & -1 \\
0& 0 &0 &0 \\
0& 1& 0 & 0
\end{pmatrix}
,\\
_{B_3}=\begin{pmatrix}
0 &0 &0 &0 \\
0 & 0 & 0 & 0 \\
0& 0 &0 &1 \\
0& 0& -1 & 0
\end{pmatrix}
[/tex]