- #1
- 22,207
- 13,782
I would like to draw some attention to the KamLAND-Zen collaboration, which recently made their latest results public on the arXiv:
The limits they put on the effective electron neutrino mass improve by almost an order of magnitude (the upper bound is in the range 60-161 meV, depending on the nuclear matrix element used) upon the previous best ones and we are now facing a situation where almost the entire quasi-degenerate region is ruled out and another order of magnitude or so would probe the inverted hierarchy (IH).
One thing worth remembering is that a signal in 0νββ would require neutrinos to be Majorana fermions and a negative result even after probing the IH and seeing IH in other experiments could be due to either neutrinos being Dirac fermions or new physics.
it is also worth noting that this result is a stronger bound than what was expected based on the KamLAND-Zen sensitivity, likely due to favourable statistical fluctuations. It will be quite some time before any other experiment can compete with this.
Search for Majorana Neutrinos near the Inverted Mass Hierarchy region with KamLAND-Zen
KamLAND-Zen Collaboration
(Submitted on 10 May 2016)
We present an improved search for neutrinoless double-beta (0νββ) decay of 136Xe in the KamLAND-Zen experiment. Owing to purification of the xenon-loaded liquid scintillator, we achieved a significant reduction of the 110mAg contaminant identified in previous searches. Combining the results from the first and second phase, we obtain a lower limit for the 0νββ decay half-life of T0ν1/2>1.1×1026 yr at 90% C.L., an almost sixfold improvement over previous limits. Using commonly adopted nuclear matrix element calculations, the corresponding upper limits on the effective Majorana neutrino mass are in the range 60-161 meV. For the most optimistic nuclear matrix elements, this limit reaches the bottom of the quasi-degenerate neutrino mass region.
Comments: 6 pages, 3 figures
Subjects: High Energy Physics - Experiment (hep-ex); Nuclear Experiment (nucl-ex); Instrumentation and Detectors (physics.ins-det)
Cite as: arXiv:1605.02889 [hep-ex]
(or arXiv:1605.02889v1 [hep-ex] for this version)
The limits they put on the effective electron neutrino mass improve by almost an order of magnitude (the upper bound is in the range 60-161 meV, depending on the nuclear matrix element used) upon the previous best ones and we are now facing a situation where almost the entire quasi-degenerate region is ruled out and another order of magnitude or so would probe the inverted hierarchy (IH).
One thing worth remembering is that a signal in 0νββ would require neutrinos to be Majorana fermions and a negative result even after probing the IH and seeing IH in other experiments could be due to either neutrinos being Dirac fermions or new physics.
it is also worth noting that this result is a stronger bound than what was expected based on the KamLAND-Zen sensitivity, likely due to favourable statistical fluctuations. It will be quite some time before any other experiment can compete with this.