- #36
Kenneth Mann
- 424
- 3
35. SPOS Use Example
If we look back to the example of insertion # 22, we get a case in which use of the SPOS might be slightly preferable to the SSOP, and which indicates that it is prudent to check out both alternatives. In Figure 37 this map was marked and then solved for the SPOS implementation, for which the circuitry is shown in figure 38. Now, we shall solve this same map for the SPOS implementation, and that grouping is shown in figure 65, along with the resulting SPOS derivation of:
W = (A ' + C ' )(A + B)
The resulting circuits for the SPOS are then shown in figure 66, beneath those for the original SSOP implementation. The two functional depictions show a pretty much equivalent set, however the two "practical" implementations seem to favor the SPOS case. This implementation apparently allows us to do without a couple of inverters, however this may not be the advantage in reality that it initially appears to be. It all depends on the surrounding circumstances. For example, if the signals come from flip-flops, the inverted signals are probably already available along with the uninverted ones. Also the available selection of gate types is a consideration. Both alternatives should be examined, and then the choice made.
KM
35. SPOS Use Example
If we look back to the example of insertion # 22, we get a case in which use of the SPOS might be slightly preferable to the SSOP, and which indicates that it is prudent to check out both alternatives. In Figure 37 this map was marked and then solved for the SPOS implementation, for which the circuitry is shown in figure 38. Now, we shall solve this same map for the SPOS implementation, and that grouping is shown in figure 65, along with the resulting SPOS derivation of:
W = (A ' + C ' )(A + B)
The resulting circuits for the SPOS are then shown in figure 66, beneath those for the original SSOP implementation. The two functional depictions show a pretty much equivalent set, however the two "practical" implementations seem to favor the SPOS case. This implementation apparently allows us to do without a couple of inverters, however this may not be the advantage in reality that it initially appears to be. It all depends on the surrounding circumstances. For example, if the signals come from flip-flops, the inverted signals are probably already available along with the uninverted ones. Also the available selection of gate types is a consideration. Both alternatives should be examined, and then the choice made.
KM