MHB Katlynsbirds' question at Yahoo Answers regarding inverse trigonometric identity

AI Thread Summary
The identity to prove is cot inverse of x equals sin inverse of 1 over the square root of 1 plus x squared. By letting theta equal cot inverse of x, it follows that x equals cot(theta). A diagram illustrates that sin(theta) equals 1 over the square root of 1 plus x squared, leading to the conclusion that theta equals sin inverse of 1 over the square root of 1 plus x squared. This confirms the identity as required. The discussion encourages further trigonometry problems to be shared in the forum.
MarkFL
Gold Member
MHB
Messages
13,284
Reaction score
12
Here is the question:

Prove the identity, pre calc!?

cot inverse= sin inverse of 1/sqr of 1+x^2

Here is a link to the question:

Prove the identity, pre calc!? - Yahoo! Answers

I have posted a link there to this topic so the OP can find my response.
 
Mathematics news on Phys.org
Re: katlynsbirds' question at Yahoo! Answers regarding inverse trignometric identity

Hello katlynsbirds,

We are given to prove:

$$\cot^{-1}(x)=\sin^{-1}\left(\frac{1}{\sqrt{1+x^2}} \right)$$

Let's let $$\theta=\cot^{-1}(x)\,\therefore\,x=\cot(\theta)$$, and now please refer to this diagram:

https://www.physicsforums.com/attachments/765._xfImport

We see that $$\cot(\theta)=\frac{x}{1}=x$$ and we can also see that:

$$\sin(\theta)=\frac{1}{\sqrt{1+x^2}}\,\therefore\, \theta=\sin^{-1}\left(\frac{1}{\sqrt{1+x^2}} \right)$$

and so we may conclude:

$$\theta=\cot^{-1}(x)=\sin^{-1}\left(\frac{1}{\sqrt{1+x^2}} \right)$$

Shown as desired.

To katlynsbirds and any other guests viewing this topic I invite and encourage you to post other trigonometry problems here in our http://www.mathhelpboards.com/f12/ forum.

Best Regards,

Mark.
 

Attachments

  • katlynsbirds.jpg
    katlynsbirds.jpg
    3.5 KB · Views: 92
Seemingly by some mathematical coincidence, a hexagon of sides 2,2,7,7, 11, and 11 can be inscribed in a circle of radius 7. The other day I saw a math problem on line, which they said came from a Polish Olympiad, where you compute the length x of the 3rd side which is the same as the radius, so that the sides of length 2,x, and 11 are inscribed on the arc of a semi-circle. The law of cosines applied twice gives the answer for x of exactly 7, but the arithmetic is so complex that the...
Thread 'Imaginary Pythagoras'
I posted this in the Lame Math thread, but it's got me thinking. Is there any validity to this? Or is it really just a mathematical trick? Naively, I see that i2 + plus 12 does equal zero2. But does this have a meaning? I know one can treat the imaginary number line as just another axis like the reals, but does that mean this does represent a triangle in the complex plane with a hypotenuse of length zero? Ibix offered a rendering of the diagram using what I assume is matrix* notation...
Fermat's Last Theorem has long been one of the most famous mathematical problems, and is now one of the most famous theorems. It simply states that the equation $$ a^n+b^n=c^n $$ has no solutions with positive integers if ##n>2.## It was named after Pierre de Fermat (1607-1665). The problem itself stems from the book Arithmetica by Diophantus of Alexandria. It gained popularity because Fermat noted in his copy "Cubum autem in duos cubos, aut quadratoquadratum in duos quadratoquadratos, et...
Back
Top