MHB Khaled's question at Yahoo Answers regarding a Bernoulli equation

AI Thread Summary
The discussion focuses on solving the Bernoulli equation given by x(dy/dx) + y = 1/y^2. The solution process involves multiplying through by y^2/x and making the substitution v = y^3, leading to a linear ordinary differential equation (ODE) in v. An integrating factor, μ(x) = x^3, is computed, allowing the ODE to be rewritten and integrated. The final explicit solution for y(x) is y(x) = (1 + Cx^(-3))^(1/3), where C is a constant. This method effectively demonstrates the steps to solve the Bernoulli equation.
MarkFL
Gold Member
MHB
Messages
13,284
Reaction score
12
Here is the question:

Solve the given bernoulli equation ( x dy/dx + y = 1/y^2)?

Solve the given bernoulli equation ( x dy/dx + y = 1/y^2)

I have posted a link there to this thread so the OP can view my work.
 
Mathematics news on Phys.org
Hello khaled,

We are given to solve:

$$x\frac{dy}{dx}+y=\frac{1}{y^2}$$

Let's first multiply through by $$\frac{y^2}{x}$$:

$$y^2\frac{dy}{dx}+\frac{y^3}{x}=\frac{1}{x}$$

Next, let's make the substitution:

$$v=y^3\,\therefore\,\frac{dv}{dx}=3y^2\frac{dy}{dx}$$

and we now have:

$$\frac{1}{3}\frac{dv}{dx}+\frac{1}{x}v=\frac{1}{x}$$

Multiply through by 3:

$$\frac{dv}{dx}+\frac{3}{x}v=\frac{3}{x}$$

We now have a linear ODE in $v$. Compute the integrating factor:

$$\mu(x)=e^{3\int\frac{dx}{x}}=x^3$$

And the ODE becomes:

$$x^3\frac{dv}{dx}+3x^2v=3x^2$$

The left side may now be rewritten as:

$$\frac{d}{dx}\left(x^3v \right)=3x^2$$

Integrate with respect to $x$:

$$\int\,d\left(x^3v \right)=3\int x^2\,dx$$

$$x^3v=x^3+C$$

$$v=1+Cx^{-3}$$

Back-substitute for $v$:

$$y^3=1+Cx^{-3}$$

Hence, the explicit solution is:

$$y(x)=\sqrt[3]{1+Cx^{-3}}$$
 
Seemingly by some mathematical coincidence, a hexagon of sides 2,2,7,7, 11, and 11 can be inscribed in a circle of radius 7. The other day I saw a math problem on line, which they said came from a Polish Olympiad, where you compute the length x of the 3rd side which is the same as the radius, so that the sides of length 2,x, and 11 are inscribed on the arc of a semi-circle. The law of cosines applied twice gives the answer for x of exactly 7, but the arithmetic is so complex that the...
Back
Top