- #1
GiantYoda
- 3
- 0
- Homework Statement
- If a projectile's initial vertical velocity is 12.5 m/s. What is the time it takes in the air till it reaches the same horizontal level, neglecting air resistance?
Note: I know how it can be solved, but I am asking why can't I use the following kinematic equations?
Δy=[(vyi+vyf)/2]*Δt
- Relevant Equations
- Kinematic equations
Givens:
Vyi=12.5 m/s
Vyf=-12.5 m/s (at the same horizontal level)
ay=-9.81 m/s^2
Δy= zero m (as the displacement on the y-axis, when the projectile reaches the same horizontal level, is zero m)
Δt=?
When I use
Δy=[(vyi+vyf)/2]*Δt
I get the time as undefined.
Δt= 2Δy/(vyi+vyf)
= 2*0 m/(12.5 m/s +-12.5 m/s)
Any reason why can't I use this specific kinematic equation?
Vyi=12.5 m/s
Vyf=-12.5 m/s (at the same horizontal level)
ay=-9.81 m/s^2
Δy= zero m (as the displacement on the y-axis, when the projectile reaches the same horizontal level, is zero m)
Δt=?
When I use
Δy=[(vyi+vyf)/2]*Δt
I get the time as undefined.
Δt= 2Δy/(vyi+vyf)
= 2*0 m/(12.5 m/s +-12.5 m/s)
Any reason why can't I use this specific kinematic equation?