- #1
Jim Lai
- 1
- 1
Hi everyone,
I am a new member and would like to ask a naive simple (my guess) question.
I am reading Weinberg’s Gravitation and Cosmology. On page 59, Eq. 2.12.10 therein reads
$$
\begin{aligned}
\left[\sigma_{\alpha \beta}\right]_{\gamma \delta}{}^{\varepsilon \zeta}
&=\eta_{\alpha \gamma} \delta_{\beta}{}^{\varepsilon} \delta^{\zeta}{}_{\delta}
-\eta_{\beta \gamma} \delta_{\alpha}{}^{\varepsilon} \delta^{\zeta}{}_{\delta}\\
&+\eta_{\alpha \delta} \delta_{\beta}{}^{\zeta} \delta^{\varepsilon}{}_{\gamma}
-\eta_{\beta \delta} \delta_{\alpha}{}^{\zeta} \delta^{\varepsilon}{}_{\gamma}
\end{aligned}
$$
I wonder if [tex] \delta_{\beta}{}^{\varepsilon} [/tex] is equal to [tex] \delta^{\varepsilon}{}_{\beta} [/tex]. Would anyone enlighten me?
Regards,
Jim Lai
I am a new member and would like to ask a naive simple (my guess) question.
I am reading Weinberg’s Gravitation and Cosmology. On page 59, Eq. 2.12.10 therein reads
$$
\begin{aligned}
\left[\sigma_{\alpha \beta}\right]_{\gamma \delta}{}^{\varepsilon \zeta}
&=\eta_{\alpha \gamma} \delta_{\beta}{}^{\varepsilon} \delta^{\zeta}{}_{\delta}
-\eta_{\beta \gamma} \delta_{\alpha}{}^{\varepsilon} \delta^{\zeta}{}_{\delta}\\
&+\eta_{\alpha \delta} \delta_{\beta}{}^{\zeta} \delta^{\varepsilon}{}_{\gamma}
-\eta_{\beta \delta} \delta_{\alpha}{}^{\zeta} \delta^{\varepsilon}{}_{\gamma}
\end{aligned}
$$
I wonder if [tex] \delta_{\beta}{}^{\varepsilon} [/tex] is equal to [tex] \delta^{\varepsilon}{}_{\beta} [/tex]. Would anyone enlighten me?
Regards,
Jim Lai
Last edited: