- #1
pzona
- 234
- 0
This may be a basic question; I'm not sure because I'm just getting into quantum theory. As I understand it, the electron orbits somewhere around the order of n x 10^6 (based on calculations I've seen). Moreover, the wave model of the electron suggests that it moves at velocity c. From this, I draw the conclusion that relativistic effects should apply since the electron is moving at a velocity close to c (I consider n x 10^6 to be "close"; perhaps this is part of my flaw), or at c. Obviously there's something wrong with this conclusion, but I'm not sure what it is.
I guess a simplified version of what I'm asking is: why don't relativistic effects affect the orbit of the electron in quantum theory. I have a suspicion it has to do with the uncertainty principle, but I really have no clue. I apologize if there are recent threads on this, but I couldn't go through all of them to make sure. Does anyone have a relatively simple answer (I know this isn't a simple matter), or does anyone have any links to some basic explanations of this?
I guess a simplified version of what I'm asking is: why don't relativistic effects affect the orbit of the electron in quantum theory. I have a suspicion it has to do with the uncertainty principle, but I really have no clue. I apologize if there are recent threads on this, but I couldn't go through all of them to make sure. Does anyone have a relatively simple answer (I know this isn't a simple matter), or does anyone have any links to some basic explanations of this?