- #1
natasha13100
- 58
- 0
1. Homework Statement
A uniform ladder of mass m and length L rests against the wall as shown. The wall is frictionless. The coefficient of static friction between the floor and the ladder is μ. The ladder makes the angle θ with the wall. How far along the ladder can a person of mass m climb before the ladder begins to slide?
2. Homework Equations
f(friction)≤μN(normal force)
t(torque)=r(moment arm)Fsinθ
G=mg
3. The Attempt at a Solution
FBD is attached
because the ladder is not moving
t=-mgLsinθ/2+NfLsinθ-μNfLcosθ-mg(L-x)sinθ=0
Fx=Nw-ff=0
Fy=Nf+fw-2mg=0
Solve t for Nf
NfLsinθ-μNfLcosθ=mgLsinθ/2+mg(L-x)sinθ
Nftanθ-μNf=mgtanθ/2+mg(L-x)tanθ/L
Nf=mg(1/2+(L-x)/L)/(1-mu/tanθ)
When θ is at its maximum without the ladder slipping, f=μN.
ff=μmg(1/2+(L-x)/L)/(1-mu/tanθ)
Solve Fxfor Nw
Nw=μmg(1/2+(L-x)/L)/(1-mu/tanθ)
Also fw=μ2mg(1/2+(L-x)/L)/(1-mu/tanθ)
Solve Fy for x.
mg(1/2+(L-x)/L)/(1-mu/tanθ)+μ2mg(1/2+(L-x)/L)/(1-mu/tanθ)-2mg=0
3/2-x/L=2(1-μ/tanθ)/(1+μ2)
x/L=3/2-2(1-μ/tanθ)/(1+μ2)
x=L(3/2-2(1-μ/tanθ)/(1+μ2))
A uniform ladder of mass m and length L rests against the wall as shown. The wall is frictionless. The coefficient of static friction between the floor and the ladder is μ. The ladder makes the angle θ with the wall. How far along the ladder can a person of mass m climb before the ladder begins to slide?
2. Homework Equations
f(friction)≤μN(normal force)
t(torque)=r(moment arm)Fsinθ
G=mg
3. The Attempt at a Solution
FBD is attached
because the ladder is not moving
t=-mgLsinθ/2+NfLsinθ-μNfLcosθ-mg(L-x)sinθ=0
Fx=Nw-ff=0
Fy=Nf+fw-2mg=0
Solve t for Nf
NfLsinθ-μNfLcosθ=mgLsinθ/2+mg(L-x)sinθ
Nftanθ-μNf=mgtanθ/2+mg(L-x)tanθ/L
Nf=mg(1/2+(L-x)/L)/(1-mu/tanθ)
When θ is at its maximum without the ladder slipping, f=μN.
ff=μmg(1/2+(L-x)/L)/(1-mu/tanθ)
Solve Fxfor Nw
Nw=μmg(1/2+(L-x)/L)/(1-mu/tanθ)
Also fw=μ2mg(1/2+(L-x)/L)/(1-mu/tanθ)
Solve Fy for x.
mg(1/2+(L-x)/L)/(1-mu/tanθ)+μ2mg(1/2+(L-x)/L)/(1-mu/tanθ)-2mg=0
3/2-x/L=2(1-μ/tanθ)/(1+μ2)
x/L=3/2-2(1-μ/tanθ)/(1+μ2)
x=L(3/2-2(1-μ/tanθ)/(1+μ2))