- #1
Dustinsfl
- 2,281
- 5
I am not sure how to do this one. Nothing I try goes anywhere.
Consider the two-body equation of motion in vector form
$$
\ddot{\mathbf{r}} = -\mu\frac{\mathbf{r}}{r^3}.
$$
Show that the $f$ and $g$ functions defined by
$$
\mathbf{r} = f\mathbf{r}_0 + g\mathbf{v}_0
$$
satisfy
$$
\ddot{f} = -\mu\frac{f}{r^3},\quad \ddot{g} = -\mu\frac{g}{r^3}
$$
for arbitrary $\mathbf{r}_0$ and $\mathbf{v}_0$.
Consider the two-body equation of motion in vector form
$$
\ddot{\mathbf{r}} = -\mu\frac{\mathbf{r}}{r^3}.
$$
Show that the $f$ and $g$ functions defined by
$$
\mathbf{r} = f\mathbf{r}_0 + g\mathbf{v}_0
$$
satisfy
$$
\ddot{f} = -\mu\frac{f}{r^3},\quad \ddot{g} = -\mu\frac{g}{r^3}
$$
for arbitrary $\mathbf{r}_0$ and $\mathbf{v}_0$.