- #1
Motorbiker
- 34
- 1
Thread moved from the technical forums to the schoolwork forums
- Homework Statement
- Derive the equations of motion using lagrange method
- Relevant Equations
- ##V_sys=V_(g,sys) +V_(e,sys)##
Lagrangian## L=T_(sys)-V_(sys)##
4
I am working on problem c and I'm not sure if I'm doing it right, please can you help me understand if I am on the right lines? I want to get a better understanding of lagrange method problems
Here is my working:
I have labelled ##k_1,k_2,k_3,k_4, k_5## left to right
Generalised coordinates:
##q_1=x1##
##q_2=x_2##
##q_3=x_3##
Generalised forces:
##Q_1= F_1cos \omega t##
##Q_2F_2 = cos \omega t##
##Q_3 = F_3cos \omega t##
Energies
$$V_e,sys=0.5(k_1x_1^2) + 0.5k_2(x_2-x_1)^2 + 0.5k_3(x_1-x_3)^2 +0.5k_4(-x_3)^2 +0.5k_5(x_3)^2$$
Then you do Lagrangian $$L= T_(sys)-V_(sys)$$
I am working on problem c and I'm not sure if I'm doing it right, please can you help me understand if I am on the right lines? I want to get a better understanding of lagrange method problems
Here is my working:
I have labelled ##k_1,k_2,k_3,k_4, k_5## left to right
Generalised coordinates:
##q_1=x1##
##q_2=x_2##
##q_3=x_3##
Generalised forces:
##Q_1= F_1cos \omega t##
##Q_2F_2 = cos \omega t##
##Q_3 = F_3cos \omega t##
Energies
$$V_e,sys=0.5(k_1x_1^2) + 0.5k_2(x_2-x_1)^2 + 0.5k_3(x_1-x_3)^2 +0.5k_4(-x_3)^2 +0.5k_5(x_3)^2$$
Then you do Lagrangian $$L= T_(sys)-V_(sys)$$
Last edited: