- #1
skate_nerd
- 176
- 0
The problem given is to find the local extreme values of \(f(x,y)=x^2y\) on the line \(x+y=3\). I went through the system of equations with the partial derivatives of \(x\), \(y\), and \(\lambda\), and found two extreme points \((0,3)\) and \((2,1)\). Plugging that into the original function I found \(f(0,3)=0\) and \(f(2,1)=4\). So from what I have learned so far, that means that \((0,3)\) is the minimum and \((2,1)\) is the maximum, correct?
Then how come if I find some other point that lies on the line \(x+y=3\) such as \((8,-5)\), that would be a negative number when plugged into \(x^2y\)? Wouldn't mean that \((0,3)\) isn't actually the minimum? Maybe I am misunderstanding the way these work, but if somebody could explain this to me that would be nice. Thanks
Then how come if I find some other point that lies on the line \(x+y=3\) such as \((8,-5)\), that would be a negative number when plugged into \(x^2y\)? Wouldn't mean that \((0,3)\) isn't actually the minimum? Maybe I am misunderstanding the way these work, but if somebody could explain this to me that would be nice. Thanks