- #36
Erland
Science Advisor
- 769
- 148
I meant ##\forall q\forall t (f(q(t),\dot q(t))=f'(q(t),\dot q(t))) \Rightarrow f = f'##, and my proof of this is essentially the same as your above (for every point in the domain of ##f## and ##f'## and every allowed ##t##, there is a path such that ##(q(t),\dot q(t))## equals this point, but you are right that it is sufficient to consider ##t=0##, provided that we, as here, don't have explicit ##t##-dependence).rubi said:By the way, having thought about this for a minute, I'm not sure what the statement is that you want to prove. Is it ##\forall t (f(q(t),\dot q(t))=f'(q(t),\dot q(t))) \Rightarrow f = f'##? If it holds for all ##t##, it also holds for ##t=0##, so if ##q(0)## and ##\dot q(0)## can be arbitrary and cover the whole domain of ##f## and ##f'##, this is trivially true and if they don't cover the whole domain of ##f## or ##f'## (e.g. ##q## is an angle between ##0## and ##2\pi##), it's easy to find counterexamples by using piecewise defined functions for example.
I don't agree that this is trivial, but it is easy when you think of it. All I want is that textbook authors point this out.