- #1
chimay
- 81
- 7
Hi,
I need to solve Laplace equation ##\nabla ^2 \Phi(z,r)=0## in cylindrical coordinates in the domain ##r_1<r<r_2##, ##0<z<L##.
The boundary conditions are:
##
\left\{
\begin{aligned}
&\Phi(0,r)=V_B \\
&\Phi(L,r)=V_P \\
& -{C^{'}}_{ox} \Phi(x,r_2)=C_0 \frac{\partial \Phi(x,r)}{\partial r}\rvert_{r=r_2} \\
&\frac{\partial \Phi(x,r)}{\partial r}\rvert_{r=r_1}=0 \\
\end{aligned}
\right.
##
By separation of variable I obtain:
##
\Phi_(z,r)=(A e^{-\lambda z} + B e^{+\lambda z})(C J_0(\lambda r) + D Y_0(\lambda r))
##
##J_0## and ##Y_0## being zero order first type and second type Bessel functions.
The constants I have to determine are : ##A, B, C, D## and ##\lambda##; they are ##5## constants, but only ##4## equations are available coming from the behaviour of ##\Phi## at the boundaries of the domain, so I do not know how to proceed.
Is there any mistake in my reasoning?
I need to solve Laplace equation ##\nabla ^2 \Phi(z,r)=0## in cylindrical coordinates in the domain ##r_1<r<r_2##, ##0<z<L##.
The boundary conditions are:
##
\left\{
\begin{aligned}
&\Phi(0,r)=V_B \\
&\Phi(L,r)=V_P \\
& -{C^{'}}_{ox} \Phi(x,r_2)=C_0 \frac{\partial \Phi(x,r)}{\partial r}\rvert_{r=r_2} \\
&\frac{\partial \Phi(x,r)}{\partial r}\rvert_{r=r_1}=0 \\
\end{aligned}
\right.
##
By separation of variable I obtain:
##
\Phi_(z,r)=(A e^{-\lambda z} + B e^{+\lambda z})(C J_0(\lambda r) + D Y_0(\lambda r))
##
##J_0## and ##Y_0## being zero order first type and second type Bessel functions.
The constants I have to determine are : ##A, B, C, D## and ##\lambda##; they are ##5## constants, but only ##4## equations are available coming from the behaviour of ##\Phi## at the boundaries of the domain, so I do not know how to proceed.
Is there any mistake in my reasoning?