- #1
bschnei
- 1
- 0
Homework Statement
Solve Laplace's equation inside a circular annulus (ring) (a < r < b) subject to the BCs:
[tex]\frac{\partial{u}}{\partial{r}}\left({a,}\theta\right)&={f}\left(\theta\right)[/tex]
[tex]\frac{\partial{u}}{\partial{r}}\left({b,}\theta\right)&={g}\left(\theta\right)[/tex]
Homework Equations
[tex]\nabla^{2}{u}&=0[/tex]
I also believe because of the physics of a ring, we have additional BCs:
[tex]{u}\left({r,-}\pi\right)&={u}\left({r,}\pi\right)[/tex]
[tex]\frac{\partial{u}}{\partial{\theta}}\left({r,-}\pi\right)&=\frac{\partial{u}}{\partial{\theta}}\left({r,}\pi\right)[/tex]
The Attempt at a Solution
I have used separation of variables to arrive at a general solution:
[tex]{u}\left({r,}\theta\right)&={A}_0+{B}_0\ln{r}+\sum^{\infty}_{n=1}{r}^{n}\left({A}_{n}\cos{n}\theta+{B}_{n}\sin{n}\theta\right)+{r}^{-n}\left({C}_{n}\cos{n}\theta+{D}_{n}\sin{n}\theta\right)[/tex]
This solution takes into account the periodic boundary conditions specified above under "Relevant Equations", but I am struggling to correctly apply the Neumann BCs specified by the problem in order to arrive at equations for the arbitrary constants.
I try to take the partial derivative of u(r,theta) with respect to r and arrive at:
[tex]\frac{\partial{u}}{\partial{r}}&=\frac{{B}_0}{r}+\sum^{\infty}_{n=1}{n}{r}^{n-1}\left({A}_{n}\cos{n}\theta+{B}_{n}\sin{n}\theta\right)-{nr}^{-n-1}\left({C}_{n}\cos{n}\theta+{D}_{n}\sin{n}\theta\right)[/tex]
I don't know how I can apply Fourier series (assuming that is what I'm supposed to do) to solve for each of the coefficients (A,B,C,D).