- #1
alexrao
- 4
- 0
Can anyone help with the solution of the Laplace equation in cylindrical coordinates
[tex]\frac{\partial^{2} p}{\partial r^{2}}[/tex] [tex]+[/tex] [tex]\frac{1}{r}[/tex] [tex]\frac{\partial p}{\partial r}[/tex] [tex]+[/tex] [tex]\frac{\partial^{2} p}{\partial z^{2}}[/tex] [tex]= 0 [/tex]
with Neumann no-flux boundaries:
[tex]\frac{\partial p}{\partial r}[/tex] [tex]\left(0,z\right)[/tex] [tex] = 0[/tex]
[tex]\frac{\partial p}{\partial r}[/tex] [tex]\left(Rmax,z\right)[/tex] [tex] = 0[/tex]
[tex]\frac{\partial p}{\partial z}[/tex] [tex]\left(r,Zmax\right)[/tex] [tex] = 0[/tex]
and a Dirichlet upper boundary:
[tex]p(r,0) = f(r)[/tex]
[tex]\frac{\partial^{2} p}{\partial r^{2}}[/tex] [tex]+[/tex] [tex]\frac{1}{r}[/tex] [tex]\frac{\partial p}{\partial r}[/tex] [tex]+[/tex] [tex]\frac{\partial^{2} p}{\partial z^{2}}[/tex] [tex]= 0 [/tex]
with Neumann no-flux boundaries:
[tex]\frac{\partial p}{\partial r}[/tex] [tex]\left(0,z\right)[/tex] [tex] = 0[/tex]
[tex]\frac{\partial p}{\partial r}[/tex] [tex]\left(Rmax,z\right)[/tex] [tex] = 0[/tex]
[tex]\frac{\partial p}{\partial z}[/tex] [tex]\left(r,Zmax\right)[/tex] [tex] = 0[/tex]
and a Dirichlet upper boundary:
[tex]p(r,0) = f(r)[/tex]