- #1
Dustinsfl
- 2,281
- 5
I don't see how this $\rho = \frac{r}{R}$ helps.Let $(x_0,y_0)$ be a point in the plane, and suppose $u(x,y)$ is continuous for $(x - x_0)^2 + (y - y_0)^2 \leq R^2$, and $u_{xx} + u_{yy} = 0$ for $(x - x_0)^2 + (y - y_0)^2 < R^2$.
Show that, for $0\leq r < R$,
$$
u(x_0 + r\cos\theta, y_0 + r\sin\theta) = \sum_{n = -\infty}^{\infty}a_n\left(\frac{r}{R}\right)^{|n|}e^{in\theta}
$$
with
$$
a_n = \frac{1}{2\pi}\int_{-\pi}^{\pi}u(x_0 + R\cos\theta, y_0 + R\sin\theta)e^{-in\theta}d\theta.
$$
In particular,
$$
u(x_0,y_0) = \frac{1}{2\pi}\int_{-\pi}^{\pi}u(x_0 + R\cos\theta, y_0 + R\sin\theta)d\theta.
$$Transform the problem by making the substitution $\rho = \frac{r}{R}$ for $0\leq r\leq R$.
The function $u(r,\theta)$ that was defined for $0\leq r\leq R$ then becomes a function $U(\rho,\theta)$ for $0\leq\rho\leq 1$.
Show that, for $0\leq r < R$,
$$
u(x_0 + r\cos\theta, y_0 + r\sin\theta) = \sum_{n = -\infty}^{\infty}a_n\left(\frac{r}{R}\right)^{|n|}e^{in\theta}
$$
with
$$
a_n = \frac{1}{2\pi}\int_{-\pi}^{\pi}u(x_0 + R\cos\theta, y_0 + R\sin\theta)e^{-in\theta}d\theta.
$$
In particular,
$$
u(x_0,y_0) = \frac{1}{2\pi}\int_{-\pi}^{\pi}u(x_0 + R\cos\theta, y_0 + R\sin\theta)d\theta.
$$Transform the problem by making the substitution $\rho = \frac{r}{R}$ for $0\leq r\leq R$.
The function $u(r,\theta)$ that was defined for $0\leq r\leq R$ then becomes a function $U(\rho,\theta)$ for $0\leq\rho\leq 1$.