Laplace Transform, Finding solution: y′′+4y′+4y=f(t)

In summary: Rightarrow y(t)=\left ( \frac{1}{(s+2)^2} \left ( \frac{s}{s^2+\omega^2}\right ) \right ) * e^{-2t}-e^{-\pi s} \left ( \frac{1}{(s+2)^2} \left ( \cos{(\omega \pi)}\frac{s}{s^2+\omega^2}\right )\right ) * e^{-2t} +e^{-\pi s} \left ( \frac{1}{(s+2)^2} \left ( \sin{(\omega \pi)}\frac{\omega}{s^2+\omega^2}\right
  • #1
jakejakejake
9
0
y′′+4y′+4y=f(t)
where f(t)=cos(ωt) if 0<t<π and f(t)=0 if t>π?
The initial conditions are y(0) = 0 , y'(0) = 1

I know that f(t)=cos(ωt)−uπ(t)cos(ωt), the heaviside equation.

AND ω is allowed to vary, supposed to find the general solution, i.e. f(t) in terms of ω

I think that after applying Laplace to both sides, I get: (s + 2)² * F(s) - 1 = s / [ s² + w²] e^(-πs) * [s / (s² + ω²)] But I'm still not sure where to go from here...

Thanks in advance!
 
Physics news on Phys.org
  • #2
jakejakejake said:
y′′+4y′+4y=f(t)
where f(t)=cos(ωt) if 0<t<π and f(t)=0 if t>π?
The initial conditions are y(0) = 0 , y'(0) = 1

I know that f(t)=cos(ωt)−uπ(t)cos(ωt), the heaviside equation.

AND ω is allowed to vary, supposed to find the general solution, i.e. f(t) in terms of ω

I think that after applying Laplace to both sides, I get: (s + 2)² * F(s) - 1 = s / [ s² + w²] e^(-πs) * [s / (s² + ω²)] But I'm still not sure where to go from here...

Thanks in advance!

$$f(t)=\cos{( \omega t)} - u_{\pi}(t) \cos{( \omega t)}$$$$\mathcal{L}(y)=Y(s)$$

$$\mathcal{L}(y')=sY(s)-y(0)=sY(s)$$

$$\mathcal{L}(y'')=s^2Y(s)-sy(0)-y'(0)=s^2Y(s)-1$$

$$\mathcal{L}(f(t))=\mathcal{L}(\cos{( \omega t)}-u_{\pi}(t) \cos{(\omega t)} ) = \\
\mathcal{L}(\cos{( \omega t)})-\mathcal{L}(u_{\pi}(t) \cos{(\omega t)}) = \\
\frac{s}{s^2+\omega^2}-e^{-\pi s} \mathcal{L}(\cos{(\omega (t+\pi))}) =
\\ \frac{s}{s^2+\omega^2}-e^{-\pi s} \mathcal{L}(\cos{(\omega t+\omega \pi)}) = \\
\frac{s}{s^2+\omega^2}-e^{-\pi s} \mathcal{L}(\cos{(\omega t)} \cos{(\omega \pi)}-\sin{(\omega t)} \sin{(\omega \pi)})= \\
\frac{s}{s^2+\omega^2}-e^{-\pi s} \cos{(\omega \pi)}\mathcal{L}(\cos{(\omega t)}) +e^{-\pi s}\sin{(\omega \pi)}\mathcal{L}(\sin{(\omega t)} ) = \\
\frac{s}{s^2+\omega^2}-e^{-\pi s} \cos{(\omega \pi)}\frac{s}{s^2+\omega^2} +e^{-\pi s}\sin{(\omega \pi)}\frac{\omega}{s^2+\omega^2}$$Therefore,

$$y''+4y'+4y=f(t) \overset{\mathcal{L}}{\Rightarrow } \\ s^2Y(s)-1+4sY(s)+4Y(s) =
\frac{s}{s^2+\omega^2}-e^{-\pi s} \cos{(\omega \pi)}\frac{s}{s^2+\omega^2} +e^{-\pi s}\sin{(\omega \pi)}\frac{\omega}{s^2+\omega^2}$$

$$\Rightarrow (s^2+4s+4)Y(s) = \frac{s}{s^2+\omega^2}-e^{-\pi s} \cos{(\omega \pi)}\frac{s}{s^2+\omega^2} +e^{-\pi s}\sin{(\omega \pi)}\frac{\omega}{s^2+\omega^2}+1$$

$$\Rightarrow (s+2)^2Y(s) = \frac{s}{s^2+\omega^2}-e^{-\pi s} \cos{(\omega \pi)}\frac{s}{s^2+\omega^2} +e^{-\pi s}\sin{(\omega \pi)}\frac{\omega}{s^2+\omega^2}+1$$

$$\Rightarrow Y(s)= \frac{1}{(s+2)^2} \left ( \frac{s}{s^2+\omega^2}-e^{-\pi s} \cos{(\omega \pi)}\frac{s}{s^2+\omega^2} +e^{-\pi s}\sin{(\omega \pi)}\frac{\omega}{s^2+\omega^2}+1\right )$$

$$\Rightarrow Y(s) =\frac{1}{(s+2)^2} \frac{s}{s^2+\omega^2}-e^{-\pi s} \frac{1}{(s+2)^2}\cos{(\omega \pi)}\frac{s}{s^2+\omega^2} +e^{-\pi s}\frac{1}{(s+2)^2} \sin{(\omega \pi)}\frac{\omega}{s^2+\omega^2}+\frac{1}{(s+2)^2}$$

Using partial fractions apply the inverse Laplace Transformation.
 

FAQ: Laplace Transform, Finding solution: y′′+4y′+4y=f(t)

What is the Laplace Transform?

The Laplace Transform is a mathematical tool used to transform a function of time into a function of complex frequency. It allows for easier analysis of differential equations and is particularly useful in solving linear differential equations with constant coefficients.

How do you perform a Laplace Transform?

To perform a Laplace Transform, you take the integral of a function multiplied by the exponential function e^-st, where s is a complex number. This integral is then evaluated from 0 to infinity.

What is the purpose of finding solutions for y′′+4y′+4y=f(t) using Laplace Transform?

The purpose of finding solutions for y′′+4y′+4y=f(t) using Laplace Transform is to simplify the process of solving differential equations. The transform reduces a differential equation into an algebraic equation, making it easier to find a solution.

What are the steps to finding a solution for y′′+4y′+4y=f(t) using Laplace Transform?

The steps to finding a solution for y′′+4y′+4y=f(t) using Laplace Transform are:

  1. Take the Laplace Transform of both sides of the equation
  2. Solve for Y(s), the transformed function
  3. Apply the inverse Laplace Transform to Y(s) to get the solution y(t)

In what situations would you use Laplace Transform to solve for y′′+4y′+4y=f(t)?

Laplace Transform is typically used to solve for y′′+4y′+4y=f(t) when the function f(t) is a piecewise continuous function or when initial conditions are given. It is also useful when solving for steady state solutions or when dealing with differential equations with variable coefficients.

Similar threads

Replies
17
Views
2K
Replies
5
Views
2K
Replies
1
Views
2K
Replies
11
Views
1K
Replies
3
Views
3K
Replies
16
Views
2K
Replies
1
Views
3K
Replies
5
Views
2K
Back
Top