- #1
Sophie1
- 3
- 0
Evening All
I have had a go at a laplace transform and got stuck.
$$\frac{d^2v}{dt^2}+\frac R L \d v t+\frac 1{LC}v=\frac 1{LC}V_0$$
$$R=12 \Omega, L=0.16H, C=10^{-4}F, V_0=6V, v(0)=0, v'(0)=0$$
so subbing these in i get
$$\mathscr L \left[ \frac {d^2v}{dt^2}+75\d v t+62500 v \right]=\mathscr L[375000]$$
$$S^2X-Sx(0)-x'(0)+75(SX-x(0))+62500v=\frac{375000}{S}$$
subbing $v(0)=0, x'(0)=0$
$$S^2X+75SX+62500X=\frac{375000}{S}$$
$$X(S^2+75S+62500)=\frac{375000}{S}$$
$$X= \frac{375000}{S(S^2+75S+62500)}$$
not I'm stuck as i can't an inverse form to change it back into.
can someone help?
I have had a go at a laplace transform and got stuck.
$$\frac{d^2v}{dt^2}+\frac R L \d v t+\frac 1{LC}v=\frac 1{LC}V_0$$
$$R=12 \Omega, L=0.16H, C=10^{-4}F, V_0=6V, v(0)=0, v'(0)=0$$
so subbing these in i get
$$\mathscr L \left[ \frac {d^2v}{dt^2}+75\d v t+62500 v \right]=\mathscr L[375000]$$
$$S^2X-Sx(0)-x'(0)+75(SX-x(0))+62500v=\frac{375000}{S}$$
subbing $v(0)=0, x'(0)=0$
$$S^2X+75SX+62500X=\frac{375000}{S}$$
$$X(S^2+75S+62500)=\frac{375000}{S}$$
$$X= \frac{375000}{S(S^2+75S+62500)}$$
not I'm stuck as i can't an inverse form to change it back into.
can someone help?
Last edited by a moderator: