- #1
A_B
- 93
- 1
Homework Statement
show that the Laplace transform of e^(At) = (sI - A)^(-1)
[tex]
\mathcal{L}\left\{ e^{At} \right\}(s) = \left(sI - A \right)^{-1}
[/tex]
The Attempt at a Solution
I find
[tex]
\left( e^{At} \right)_{ij} = \sum_{k=0}^{\infty} \frac{(A^k)_{ij}t^k}{k!}
[/tex]
and since
[tex]
\mathcal{L}\left\{ (A^k)_{ij}t^k \right\}(s) = \frac{k!}{s^{k+1}} (A^k)_{ij}
[/tex]
we have
[tex]
\mathcal{L}\left\{\left( e^{At} \right)_{ij}\right\}(s) = \sum_{k=0}^{\infty} \frac{(A^k)_{ij}}{s^{k+1}}
[/tex]
and there I'm stuck.
Thanks
A_B
Last edited: