- #1
jhat21
- 9
- 0
Homework Statement
Laplace transform from f(x) = x cos(ax)
to ^f(s) = (s^2 - a^2) / (s^2 + a^2)^2
how do you get the -a^2 term in the numerator,
all i come up with is s^2?
Homework Equations
f(x) = x e^(ax) ----> ^f(s) = 1/(s-a)^2
2 cos(ax) = e^(aix) + e^(-aix)
The Attempt at a Solution
f(s) = integral[ x/2 (e^-(s-ai)x + e^-(s+ai)x) ]dx
= 1/2[1/(s-ai)^2 + 1/(s+ai)^2]
=1/2[ (s+ai)^2 + (s-ai)^2] / (s^2+a^2)^2
=1/2(s^2+a^2)^2 [ s^2 + 2asi - a^2 + s^2 - 2asi +a^2]
=(s^2 )/ (s^2 + a^2)^2
but the given solution is:
(s^2 - a^2) / (s^2 + a^2)^2
so where am i missing the -a^2 term?