- #1
QuantumMech
- 16
- 0
I need to take the [itex]\nabla^2[/itex] of [itex]x^2+y^2+z^2[/itex]. This is how far I got
[tex]
\begin{gather*}
\nabla^2 = \frac{d^2}{dr^2} + \frac{2}{r} \frac{d}{dr} + \frac{1}{r^2}(\frac{1}{sin^2\theta}\frac{d^2}{d\Phi^2} + \frac{1}{sin\theta}\frac{d}{d\theta} sin\theta\frac{d}{d\theta})\\
\nabla^2(r^2sin^2\theta cos^2\Phi + r^2sin^2\theta sin^2\Phi + r^2cos^2\theta = \frac{1}{sin\theta} \frac{d}{d\theta}(sin\theta \frac{d}{d\theta}) + \frac{1}{sin^2\theta} \frac{d^2}{d\Phi^2})
\end{gather*}
[/tex]
Also, can degeneracy occur with n not in order? Like for a part. in 3D box can degeneracy occur for [tex]\Psi_{1,3,5}[/tex] [tex]\Psi_{5,3,1}[/tex] or do the n have to be next each other like [tex]\Psi_{1,2,1}[/tex] [tex]\Psi_{2,1,1}[/tex]?
[tex]
\begin{gather*}
\nabla^2 = \frac{d^2}{dr^2} + \frac{2}{r} \frac{d}{dr} + \frac{1}{r^2}(\frac{1}{sin^2\theta}\frac{d^2}{d\Phi^2} + \frac{1}{sin\theta}\frac{d}{d\theta} sin\theta\frac{d}{d\theta})\\
\nabla^2(r^2sin^2\theta cos^2\Phi + r^2sin^2\theta sin^2\Phi + r^2cos^2\theta = \frac{1}{sin\theta} \frac{d}{d\theta}(sin\theta \frac{d}{d\theta}) + \frac{1}{sin^2\theta} \frac{d^2}{d\Phi^2})
\end{gather*}
[/tex]
Also, can degeneracy occur with n not in order? Like for a part. in 3D box can degeneracy occur for [tex]\Psi_{1,3,5}[/tex] [tex]\Psi_{5,3,1}[/tex] or do the n have to be next each other like [tex]\Psi_{1,2,1}[/tex] [tex]\Psi_{2,1,1}[/tex]?