- #1
Dustinsfl
- 2,281
- 5
\begin{align}
u_t + u_{xxx} + 6uu_x &= 0\\
L &= \partial_{xx} + u_t\\
M &= -4\partial_{xxx} - 3(2u\partial_x + u_x)
\end{align}
For the \(L\) operator, should that be \(u\) not \(u_t\)?
I ask because I found
\begin{align}
\partial_{xx}\psi &= (\lambda - u)\psi\\
\partial_t\psi &= (-4\partial_{xxx} - 6u\partial_x - 3u_x)\psi
\end{align}
Also, where did \(\lambda\) come from?
u_t + u_{xxx} + 6uu_x &= 0\\
L &= \partial_{xx} + u_t\\
M &= -4\partial_{xxx} - 3(2u\partial_x + u_x)
\end{align}
For the \(L\) operator, should that be \(u\) not \(u_t\)?
I ask because I found
\begin{align}
\partial_{xx}\psi &= (\lambda - u)\psi\\
\partial_t\psi &= (-4\partial_{xxx} - 6u\partial_x - 3u_x)\psi
\end{align}
Also, where did \(\lambda\) come from?