- #1
karush
Gold Member
MHB
- 3,269
- 5
$\tiny{LCC \ \ 205 \ \ \ 8.4.12 \ \ sine \ \ substitution }$
$$\displaystyle
I=\int_{1/2}^{1} \frac{\sqrt{1-{x}^{2 }}}{{x}^{2 }} \ dx $$
Substitution
$$\displaystyle
x = \sin \left({u}\right)
\ \ \ dx=\cos\left({u}\right)\ du $$
Change of variables
$$\arcsin\left({1/2 }\right)=\frac{\pi}{6}=a
\ \ \ \arcsin\left({1}\right)=\frac{\pi}{2}=b$$
$$\displaystyle
I=\int_{a}^{b}
\frac{\sqrt{1-\sin^{2 }{u}}}{\sin^{2 }{u} }
\cos\left({u}\right) \ du
\implies
\int_{a}^{b}
\frac{\cos^{2 }{u}}{\sin^{2 }{u} } \ du
\implies\int_{a}^{b} \cot^2 \left({u}\right) \ du $$
By table reference
$$\displaystyle
I=-\cot{u}-u+C$$
Then
$$\displaystyle
I=\left[I\right]_{\pi/2}^{\pi/6} +C
=\sqrt{3}-\frac{\pi}{3}+C$$
No book answer, not sure of proper notation
$\tiny{\text{from math study group at Surf The Nations}}$
$$\displaystyle
I=\int_{1/2}^{1} \frac{\sqrt{1-{x}^{2 }}}{{x}^{2 }} \ dx $$
Substitution
$$\displaystyle
x = \sin \left({u}\right)
\ \ \ dx=\cos\left({u}\right)\ du $$
Change of variables
$$\arcsin\left({1/2 }\right)=\frac{\pi}{6}=a
\ \ \ \arcsin\left({1}\right)=\frac{\pi}{2}=b$$
$$\displaystyle
I=\int_{a}^{b}
\frac{\sqrt{1-\sin^{2 }{u}}}{\sin^{2 }{u} }
\cos\left({u}\right) \ du
\implies
\int_{a}^{b}
\frac{\cos^{2 }{u}}{\sin^{2 }{u} } \ du
\implies\int_{a}^{b} \cot^2 \left({u}\right) \ du $$
By table reference
$$\displaystyle
I=-\cot{u}-u+C$$
Then
$$\displaystyle
I=\left[I\right]_{\pi/2}^{\pi/6} +C
=\sqrt{3}-\frac{\pi}{3}+C$$
No book answer, not sure of proper notation
$\tiny{\text{from math study group at Surf The Nations}}$