- #1
karush
Gold Member
MHB
- 3,269
- 5
$\tiny{LCC \ \ 205 \ \ \ 8.4.7 \ \ sine \ \ substitution }$
$\displaystyle
I=\int_0^{5/2} \frac{1}{\sqrt{25-x^2}}\ dx
=\frac{\pi}{6}
$
$$\displaystyle
x=5\sin\left({u}\right) \ \ \ dx=5\cos\left({u}\right) \ \ du
$$
$$\displaystyle
I=\int_0^{5/2}
\frac{1}{\sqrt{25-25 \sin^2 \left({u}\right)}}
\ \ 5\cos\left({u}\right)
\ du $$
Not sure if this setup is right
$\displaystyle
I=\int_0^{5/2} \frac{1}{\sqrt{25-x^2}}\ dx
=\frac{\pi}{6}
$
$$\displaystyle
x=5\sin\left({u}\right) \ \ \ dx=5\cos\left({u}\right) \ \ du
$$
$$\displaystyle
I=\int_0^{5/2}
\frac{1}{\sqrt{25-25 \sin^2 \left({u}\right)}}
\ \ 5\cos\left({u}\right)
\ du $$
Not sure if this setup is right