LCC 206 {review 7r13} Integral substitution

In summary, the given integral can be simplified by using the substitution $u=2x$ and then using the identity $\cos^2(u) = 1 - \sin^2(u)$ to rewrite the integrand. This leads to the integral $\frac{1}{2}\int_0^{\frac{\pi}{2}} \left(\cos^2(u)\right)^2\sin^2(u)\cos(u)\,du$, which can be further simplified by using the substitution $t = \sin(u)$. Finally, using the known values of sine for $u=0$ and $u=\frac{\pi}{2}$, we can solve for the value of the integral, which is $\frac{
  • #1
karush
Gold Member
MHB
3,269
5
$\tiny\text{LCC 206 {review 7r13} Integral substitution}$
$$I=\int_{0}^{\pi/4}
\cos^5\left({2x}\right)\sin^2 \left({2x}\right)\,dx= \frac{4}{105} $$
$\text{u substitution } $
\begin{align}\displaystyle
u& = 2x&
du&= 2 \ d{x}&
2(\pi/4) &=\pi/2
\end{align}
$\text{then } $
$$I=2\int_{0}^{\pi/2}
\cos^5\left({u}\right)\sin^2 \left({u}\right)\,du
\implies \int_{0}^{\pi/2}
{\left(\cos^2 \left({u}\right)\right)}^{2}
\sin^2 \left({u}\right)\cos\left({u}\right) \ dx $$
$\text{Not sure if this is a good direction to go in?} $

$\tiny\text{ Surf the Nations math study group}$

🏄 🏄 🏄 🏄 🏄
 
Physics news on Phys.org
  • #2
karush said:
$\tiny\text{LCC 206 {review 7r13} Integral substitution}$
$$I=\int_{0}^{\pi/4}
\cos^5\left({2x}\right)\sin^2 \left({2x}\right)\,dx= \frac{4}{105} $$
$\text{u substitution } $
\begin{align}\displaystyle
u& = 2x&
du&= 2 \ d{x}&
2(\pi/4) &=\pi/2
\end{align}
$\text{then } $
$$I=2\int_{0}^{\pi/2}
\cos^5\left({u}\right)\sin^2 \left({u}\right)\,du
\implies \int_{0}^{\pi/2}
{\left(\cos^2 \left({u}\right)\right)}^{2}
\sin^2 \left({u}\right)\cos\left({u}\right) \ dx $$
$\text{Not sure if this is a good direction to go in?} $

$\tiny\text{ Surf the Nations math study group}$

🏄 🏄 🏄 🏄 🏄

Yes that's exactly the direction to go in, but you have made a mistake, it should be a factor of 1/2 out front, not 2. Now write $\displaystyle \begin{align*} \cos^2{(u)} = 1 - \sin^2{(u)} \end{align*}$ making the integral

$\displaystyle \begin{align*} \frac{1}{2}\int_0^{\frac{\pi}{2}}{\left[ \cos^2{(u)} \right] ^2\sin^2{(u)}\cos{(u)}\,\mathrm{d}u} &= \frac{1}{2}\int_0^{\frac{\pi}{2}}{ \left[ 1 - \sin^2{(u)} \right] ^2\sin^2{(u)} \cos{(u)}\,\mathrm{d}u } \\ &= \frac{1}{2}\int_0^{\frac{\pi}{2}}{ \left[ 1 - 2\sin^2{(u)} + \sin^4{(u)} \right] \sin^2{(u)} \cos{(u)}\,\mathrm{d}u } \\ &= \frac{1}{2} \int_0^{\frac{\pi}{2}}{ \left[ \sin^2{(u)} - 2\sin^4{(u)} + \sin^6{(u)} \right] \cos{(u)}\,\mathrm{d}u } \end{align*}$

Now you can make an appropriate substitution :)
 
  • #3
Well, you would actually have:

\(\displaystyle I=\frac{1}{2}\int_0^{\frac{\pi}{2}} \cos^5(u)\sin^2(u)\,du\)

And then your observation that you can write:

\(\displaystyle I=\frac{1}{2}\int_0^{\frac{\pi}{2}} \left(\cos^2(u)\right)^2\sin^2(u)\cos(u)\,du\)

Is a good one because now (using a Pythagorean identity) you can write the integral in the form:

\(\displaystyle I=\frac{1}{2}\int_0^{\frac{\pi}{2}} f(\sin(u))\,d(\sin(u))\)
 
  • #4
What would $f$ and $d$ be?
 
  • #5
karush said:
What would $f$ and $d$ be?

Your integrand and differential, respectively. :)

I fiddled around too long trying to make something work with the symmetry of the given integrand, and was beaten to the punch. :D
 
  • #6
$\displaystyle \begin{align*} \frac{1}{2}\int_0^{\frac{\pi}{2}}{\left[ \cos^2{(u)} \right] ^2\sin^2{(u)}\cos{(u)}\,\mathrm{d}u} &= \frac{1}{2}\int_0^{\frac{\pi}{2}}{ \left[ 1 - \sin^2{(u)} \right] ^2\sin^2{(u)} \cos{(u)}\,\mathrm{d}u } \\ &= \frac{1}{2}\int_0^{\frac{\pi}{2}}{ \left[ 1 - 2\sin^2{(u)} + \sin^4{(u)} \right] \sin^2{(u)} \cos{(u)}\,\mathrm{d}u } \\ &= \frac{1}{2} \int_0^{\frac{\pi}{2}}{ \left[ \sin^2{(u)} - 2\sin^4{(u)} + \sin^6{(u)} \right] \cos{(u)}\,\mathrm{d}u } \end{align*}$

$$\frac{1}{2}\left[
\frac{ \sin^3{(u)}}{3}-
\frac{ \sin^5{(u)}}{5}+
\frac{ \sin^7{(u)}}{7}\right]_0^{π/2}
=\frac{4}{105}$$
 
Last edited:

Related to LCC 206 {review 7r13} Integral substitution

What is LCC 206 {review 7r13} Integral substitution?

LCC 206 {review 7r13} Integral substitution is a mathematical concept used to solve integrals by replacing the variable with another variable or expression. It is also known as the u-substitution method.

How does Integral substitution work?

Integral substitution works by replacing the variable in the integral with a new variable or expression, and then using the chain rule to simplify the integral. This allows for easier integration and can help solve more complex integrals.

What are the steps for using Integral substitution?

The steps for using Integral substitution are as follows:

  1. Identify the variable to be replaced and the corresponding substitution variable.
  2. Take the derivative of the substitution variable.
  3. Substitute the original variable with the substitution variable and the derivative into the integral.
  4. Simplify the integral using the chain rule.
  5. Integrate the simplified integral.
  6. Substitute the original variable back in to get the final answer.

What are some common mistakes to avoid when using Integral substitution?

Some common mistakes to avoid when using Integral substitution include:

  • Forgetting to take the derivative of the substitution variable.
  • Forgetting to substitute the original variable back in after integrating.
  • Using the wrong substitution variable.
  • Not simplifying the integral using the chain rule.

When should I use Integral substitution?

Integral substitution is best used when the integral contains a function within a function, or when the integral involves trigonometric functions. It can also be useful in simplifying complex integrals. However, it is not always necessary and there are other methods for solving integrals that may be more appropriate depending on the problem.

Similar threads

Replies
3
Views
1K
Replies
2
Views
1K
Replies
3
Views
1K
Replies
7
Views
2K
Replies
4
Views
1K
Replies
2
Views
1K
Replies
6
Views
1K
Replies
2
Views
1K
Replies
6
Views
2K
Back
Top