- #1
E01
- 8
- 0
I'm a new first year graduate student and I've decided that my way of learning mathematics may not be the most efficient. I often memorize proofs in the book in the hopes that I'll be able to see where to apply the techniques used in the problems(I often understand the logic of a proof but won't remember the techniques at all if I don't try to rote memorize them). I seem to have to go through this process to get started on the exercises otherwise I won't know what to try and do.
I'll try to refine this question more later but I guess I'm asking:
For those who have done fairly well in Mathematics, what processes do you go through while learning new mathematics? Do you work a lot of simple examples? Do you mainly work through exercises? Do you play with the theorems and proofs in the book to see what happens given different hypotheses? Do you have to memorize things actively to be able to remember them for use later? If you could give me concrete "best practice" tips I would greatly appreciate it.
I'll try to refine this question more later but I guess I'm asking:
For those who have done fairly well in Mathematics, what processes do you go through while learning new mathematics? Do you work a lot of simple examples? Do you mainly work through exercises? Do you play with the theorems and proofs in the book to see what happens given different hypotheses? Do you have to memorize things actively to be able to remember them for use later? If you could give me concrete "best practice" tips I would greatly appreciate it.