- #1
wayneckm
- 68
- 0
Hello all,
Here is my question:
Suppose a measureable space [tex] (S,\mathcal{S},\mu) [/tex] with [tex] \mu(S) < \infty [/tex] and [tex] f : S \mapsto [0,\infty) [/tex], this is not yet sufficient to ensure [tex] \int_{S} f d \mu < \infty [/tex].
Am I correct?
Here is my question:
Suppose a measureable space [tex] (S,\mathcal{S},\mu) [/tex] with [tex] \mu(S) < \infty [/tex] and [tex] f : S \mapsto [0,\infty) [/tex], this is not yet sufficient to ensure [tex] \int_{S} f d \mu < \infty [/tex].
Am I correct?