- #1
rustyjoker
- 5
- 0
Homework Statement
Prove (using Lebesgue outer measure) that $$m_{2}^{*}(\{(x,y)\in\mathbb{R}^{2}\colon x>1,0<y<x^{-2}\})=m_{2}^{*}(A)<\infty$$
The Attempt at a Solution
I'm not sure if this is valid proof but I'd have done it like this:
$$\int_{1}^{k}\left|x^{-2}\right|\, dx <\infty \forall k\in\mathbb{N} \Rightarrow \int_{[1,\infty[}\left|x^{-2}\right|\, dx<\infty \Rightarrow A $$is measurable and$$ m_{2}^{*}(A)=\int_{1}^{\infty}x^{-2}\, dx<\infty.\qquad\square$$What else should I include to make sure the proof is valid?