- #1
gulsen
- 217
- 0
...and orthogonality relation.
The book says
[tex]\int_{-1}^{1} P_n(x) P_m(x) dx = \delta_{mn} \frac{2}{2n+1}[/tex]
So I sat and tried derieving it. First, I gather an inventory that might be useful:
[tex](1-x^2)P_n''(x) - 2xP_n'(x) + n(n+1) = 0[/tex]
[tex][(1-x^2)P_n'(x)]' = -n(n+1)P_n(x)[/tex]
[tex]P_n(-x) = (-1)^n P_n(x)[/tex]
[tex]P_n'(-x) = -(-1)^n P_n'(x)[/tex]
And started the job. Now...
[tex][(1-x^2)P_n'(x)]' = -n(n+1)P_n(x)[/tex]
multiplying both sides with [tex]P_m(x)[/tex] and integrating from -1 to 1
[tex]\int_{-1}^{1} [(1-x^2)P_n'(x)]' P_m(x) dx = \int_{-1}^{1} -n(n+1)P_n(x) P_m(x) dx[/tex]
applying a partial to the lefthand side
[tex](1-x^2)P_n'(x) P_m(x) |_{-1}^{1} - \int_{-1}^{1} (1-x^2)P_n'(x) P_m'(x) dx = \int_{-1}^{1} -n(n+1)P_n(x) P_m(x) dx[/tex]
switching n and m's, ve get another equation like it
[tex](1-x^2)P_m'(x) P_n(x) |_{-1}^{1} - \int_{-1}^{1} (1-x^2)P_m'(x) P_n'(x) dx = \int_{-1}^{1} -m(m+1)P_m(x) P_n(x) dx[/tex]
substituing these
[tex][-n(n+1) + m(m+1)]\int_{-1}^{1} P_n(x) P_m(x) dx = [(1-x^2)(P_n'(x) P_m(x) - P_m'(x) P_n(x))] |_{-1}^{1}[/tex]
now, from the inventory
[tex]P_n(-x)P_m'(-x) = -P_n(x) P_m'(x)[/tex]
the righthand side becomes
[tex]\lim_{x \to 1} 2[(1-x^2)(P_n'(x) P_m(x) - P_m'(x) P_n(x))[/tex]
and in it's final shape
[tex]\int_{-1}^{1} P_n(x) P_m(x) dx = \lim_{x \to 1} 2(1-x^2) \frac {(P_n'(x) P_m(x) - P_m'(x) P_n(x))}{-n(n+1) + m(m+1)}[/tex]
For [tex]n \neq m[/tex], there's no problem, it's straightly 0. But for [tex]n = m[/tex]...
And everything starts going wrong. By stating
[tex](1-x^2)P_n'(x) = \int -n(n+1)P_n(x) dx[/tex]
i'm making a little change
[tex]\int_{-1}^{1} P_n(x) P_m(x) dx = \lim_{x \to 1} 2 \frac {P_m(x) (\int -n(n+1)P_n(x) dx) - P_n(x) (\int -m(m+1)P_m(x) dx))}{-n(n+1) + m(m+1)}[/tex]
Now I plug [tex]P_n(x) = P_m(x)[/tex], [tex]x=1[/tex] and [tex]P_n(1) = 1[/tex] and state
[tex]\int_{-1}^{1} P_n(x) P_m(x) dx = \lim_{x \to 1} 2 \frac {P_m(x) (\int -n(n+1)P_n(x) dx) - P_n(x) (\int -m(m+1)P_m(x) dx))}{-n(n+1) + m(m+1)}[/tex]
[tex]\int_{-1}^{1} P_n(x) P_m(x) dx = 2 (\int P_n(x) dx)_{x=1}[/tex]
which is the nonsense of the day.
Where's the error?
The book says
[tex]\int_{-1}^{1} P_n(x) P_m(x) dx = \delta_{mn} \frac{2}{2n+1}[/tex]
So I sat and tried derieving it. First, I gather an inventory that might be useful:
[tex](1-x^2)P_n''(x) - 2xP_n'(x) + n(n+1) = 0[/tex]
[tex][(1-x^2)P_n'(x)]' = -n(n+1)P_n(x)[/tex]
[tex]P_n(-x) = (-1)^n P_n(x)[/tex]
[tex]P_n'(-x) = -(-1)^n P_n'(x)[/tex]
And started the job. Now...
[tex][(1-x^2)P_n'(x)]' = -n(n+1)P_n(x)[/tex]
multiplying both sides with [tex]P_m(x)[/tex] and integrating from -1 to 1
[tex]\int_{-1}^{1} [(1-x^2)P_n'(x)]' P_m(x) dx = \int_{-1}^{1} -n(n+1)P_n(x) P_m(x) dx[/tex]
applying a partial to the lefthand side
[tex](1-x^2)P_n'(x) P_m(x) |_{-1}^{1} - \int_{-1}^{1} (1-x^2)P_n'(x) P_m'(x) dx = \int_{-1}^{1} -n(n+1)P_n(x) P_m(x) dx[/tex]
switching n and m's, ve get another equation like it
[tex](1-x^2)P_m'(x) P_n(x) |_{-1}^{1} - \int_{-1}^{1} (1-x^2)P_m'(x) P_n'(x) dx = \int_{-1}^{1} -m(m+1)P_m(x) P_n(x) dx[/tex]
substituing these
[tex][-n(n+1) + m(m+1)]\int_{-1}^{1} P_n(x) P_m(x) dx = [(1-x^2)(P_n'(x) P_m(x) - P_m'(x) P_n(x))] |_{-1}^{1}[/tex]
now, from the inventory
[tex]P_n(-x)P_m'(-x) = -P_n(x) P_m'(x)[/tex]
the righthand side becomes
[tex]\lim_{x \to 1} 2[(1-x^2)(P_n'(x) P_m(x) - P_m'(x) P_n(x))[/tex]
and in it's final shape
[tex]\int_{-1}^{1} P_n(x) P_m(x) dx = \lim_{x \to 1} 2(1-x^2) \frac {(P_n'(x) P_m(x) - P_m'(x) P_n(x))}{-n(n+1) + m(m+1)}[/tex]
For [tex]n \neq m[/tex], there's no problem, it's straightly 0. But for [tex]n = m[/tex]...
And everything starts going wrong. By stating
[tex](1-x^2)P_n'(x) = \int -n(n+1)P_n(x) dx[/tex]
i'm making a little change
[tex]\int_{-1}^{1} P_n(x) P_m(x) dx = \lim_{x \to 1} 2 \frac {P_m(x) (\int -n(n+1)P_n(x) dx) - P_n(x) (\int -m(m+1)P_m(x) dx))}{-n(n+1) + m(m+1)}[/tex]
Now I plug [tex]P_n(x) = P_m(x)[/tex], [tex]x=1[/tex] and [tex]P_n(1) = 1[/tex] and state
[tex]\int_{-1}^{1} P_n(x) P_m(x) dx = \lim_{x \to 1} 2 \frac {P_m(x) (\int -n(n+1)P_n(x) dx) - P_n(x) (\int -m(m+1)P_m(x) dx))}{-n(n+1) + m(m+1)}[/tex]
[tex]\int_{-1}^{1} P_n(x) P_m(x) dx = 2 (\int P_n(x) dx)_{x=1}[/tex]
which is the nonsense of the day.
Where's the error?
Last edited: