- #1
Hall
- 351
- 88
- Homework Statement
- Given a sequence ##(s_n)##
(i) If ##t## is in ##R##, then there is a subsequence of ##(s_n)## converging to ##t##
if and only if the set ##\{n \in N : |s_n − t| \lt \varepsilon\}## is infinite for all
ε > 0.
- Relevant Equations
- We shall see.
Let's us look at the first implication (I will post the reverse implication once this proof has been verified). We have to prove if there is a subsequence of ##(s_n)## converging to ##t##, then there are infinitely many elements of ##(s_n)## lying within ##\epsilon## of ##t##, for any ##\varepsilon \gt 0##.
Let the subsequence be ##(t_k)## which converges to ##t##. ## \lim t_n = t##. So, for any ##\epsilon \gt 0## there is a ##N##, such that
$$
k \gt N \implies |t_k - t| \lt \varepsilon$$
that means that there are infinite ##t_k ~s## satisfying ##t- \varepsilon \lt t_k \lt t+ \varepsilon##, given that ##k \gt N##.
As for every ##t_k## in ##(t_k)## corresponds to a ##s_n## in ##(s_n)##, therefore, if there are infinite ##t_k## satisfying
$$
t- \varepsilon \lt t_k \lt t+\varepsilon$$
then there are infinite ##s_n## satisfying ##t -\varepsilon \lt s_n \lt t+ \varepsilon##. Thus, the set ##\{ n \in N : |s_n -t| \lt \varepsilon\}## is infinite.
Is my proof correct?
Let the subsequence be ##(t_k)## which converges to ##t##. ## \lim t_n = t##. So, for any ##\epsilon \gt 0## there is a ##N##, such that
$$
k \gt N \implies |t_k - t| \lt \varepsilon$$
that means that there are infinite ##t_k ~s## satisfying ##t- \varepsilon \lt t_k \lt t+ \varepsilon##, given that ##k \gt N##.
As for every ##t_k## in ##(t_k)## corresponds to a ##s_n## in ##(s_n)##, therefore, if there are infinite ##t_k## satisfying
$$
t- \varepsilon \lt t_k \lt t+\varepsilon$$
then there are infinite ##s_n## satisfying ##t -\varepsilon \lt s_n \lt t+ \varepsilon##. Thus, the set ##\{ n \in N : |s_n -t| \lt \varepsilon\}## is infinite.
Is my proof correct?