Length of Shortest Side In a Triangle

In summary, the conversation discusses proving that if the sum of the squares of two sides of a triangle is greater than five times the square of the third side, then the third side must be the shortest side. The conversation also includes a proof by assuming the third side is the shortest side.
  • #1
anemone
Gold Member
MHB
POTW Director
3,883
115
If $a,\,b$ and $c$ are the sides of a triangle $ABC$, prove that if $a^2+b^2>5c^2$, then $c$ is the length of the shortest side.
 
Mathematics news on Phys.org
  • #2
Suppose we assume:

\(\displaystyle a>c\implies a^2>c^2\)

\(\displaystyle b>c\implies b^2>c^2\)

These two conditions also imply:

\(\displaystyle ab>c^2\)

Adding the three implications, we obtain:

\(\displaystyle a^2+ab+b^2>3c^2\)

The triangle inequality implies:

\(\displaystyle a^2+2ab+b^2>c^2\)

And, we are given:

\(\displaystyle a^2+b^2>5c^2\)

Adding these last two, there results:

\(\displaystyle a^2+ab+b^2>3c^2\)

As we initially found, this is the result of assuming both \(a\) and \(b\) are greater than \(c\). :)
 
  • #3
Good job, MarkFL! And thanks for participating!

Solution of other:
Assume that $c$ is not the shortest side. Therefore we have $a\le c$, or $a^2 \le c^2$.

Adding $c$ to both sides, and square them yields $(a+c)^2\le 4c^2$.

By the triangle inequality we have $b<a+c$ and hence $b^2<(a+c)^2\le 4c^2$.

We then get $a^2+b^2<5c^2$, which reach to a contradiction and therefore, our assumption is wrong and $c$ is the length of the shortest side of the triangle.
 
  • #4
MarkFL said:
Suppose we assume:

\(\displaystyle a>c\implies a^2>c^2\)

\(\displaystyle b>c\implies b^2>c^2\)

These two conditions also imply:

\(\displaystyle ab>c^2\)

Adding the three implications, we obtain:

\(\displaystyle a^2+ab+b^2>3c^2\)

The triangle inequality implies:

\(\displaystyle a^2+2ab+b^2>c^2\)

And, we are given:

\(\displaystyle a^2+b^2>5c^2\)

Adding these last two, there results:

\(\displaystyle a^2+ab+b^2>3c^2\)

As we initially found, this is the result of assuming both \(a\) and \(b\) are greater than \(c\). :)

Hello Mark

You have assumed c being the shortest side and you have taken the given condition as well. So I am not convinced that
the proof is right. You have taken both the condition and assumption and proved it.

If I have missed something kindly let me know.
 
  • #5
kaliprasad said:
Hello Mark

You have assumed c being the shortest side and you have taken the given condition as well. So I am not convinced that
the proof is right. You have taken both the condition and assumption and proved it.

If I have missed something kindly let me know.

I have assumed that \(c\) is the shortest side and shown how it leads to an implication provided both by the given and the triangle inequality. It seems to me this is sufficient. Is it not?
 
  • #6
MarkFL said:
I have assumed that \(c\) is the shortest side and shown how it leads to an implication provided both by the given and the triangle inequality. It seems to me this is sufficient. Is it not?

But does not prove that this is not true if c is not the shortest side which we need to prove
 
  • #7
kaliprasad said:
But does not prove that this is not true if c is not the shortest side which we need to prove

My apologies. You are absolutely correct. Suppose I arranged things in the following manner:

The triangle inequality implies:

\(\displaystyle a^2+2ab+b^2>c^2\)

And, we are given:

\(\displaystyle a^2+b^2>5c^2\)

Adding these, there results:

\(\displaystyle a^2+ab+b^2>3c^2\)

Now, suppose \(a=3b\) and \(c=2b\):

\(\displaystyle 9b^2+3b^2+b^2>12b^2\)

\(\displaystyle 13b^2>12b^2\)

This is true, even though \(c>b\). I'll try to come up with a sound solution. :)
 

FAQ: Length of Shortest Side In a Triangle

What is the length of the shortest side in a triangle?

The length of the shortest side in a triangle can vary depending on the specific triangle. However, in a right triangle, the shortest side is always the side opposite the smallest angle.

How do I find the length of the shortest side in a triangle?

To find the length of the shortest side in a triangle, you can use the Pythagorean Theorem. This theorem states that the square of the length of the longest side (hypotenuse) is equal to the sum of the squares of the other two sides. Therefore, you can find the length of the shortest side by subtracting the square of the other two sides from the square of the hypotenuse and then taking the square root of the result.

Can the shortest side in a triangle be longer than the other sides?

No, the shortest side in a triangle cannot be longer than the other two sides. This is because in a triangle, the sum of any two sides must be greater than the third side. Therefore, the shortest side must be shorter than the other two sides.

Is the length of the shortest side in a triangle always an integer?

No, the length of the shortest side in a triangle does not always have to be an integer. It can be a decimal or a fraction depending on the specific triangle. However, in a right triangle with integer side lengths, the length of the shortest side will also be an integer.

How does the length of the shortest side in a triangle affect the shape of the triangle?

The length of the shortest side in a triangle does not determine the shape of the triangle. The shape of a triangle is determined by the lengths of all three sides and the angles between them. However, in a right triangle, the length of the shortest side is directly related to the size of the smallest angle, which can affect the overall shape of the triangle.

Similar threads

Replies
1
Views
1K
Replies
1
Views
904
Replies
1
Views
975
Replies
2
Views
1K
Replies
5
Views
2K
Replies
4
Views
1K
Back
Top