##\lim_{n\to\infty}\left(n\left(1+\frac1n\right)^n-ne\right)=?##

  • #1
littlemathquark
34
9
Homework Statement
##\lim_{n\to\infty}\left(n\left(1+\frac1n\right)^n-ne\right)=?##
Relevant Equations
none
##\left(1+\dfrac1n\right)^n=e^{n\ln\left(1+\dfrac1n\right)}## and using Taylor expansion ##\ln\left(1+\dfrac1n\right)=\dfrac 1n-\dfrac1{2n^2}+\dfrac1{3n^3}-\cdots##

##n\ln\left(1+\dfrac1n\right)=1-\dfrac 1{2n}+\dfrac1{3n^2}-\cdots##

##e^{n\ln(1+\frac1n)}=e.e^{-\frac1{2n}+\frac 1{3n^2}-...}## For small x real numbers ##e^x=1+x##, ##x=-\frac1{2n}+\frac 1{3n^2}-..##

##e^{n\ln(1+\frac1n)}=e.(1-\frac1{2n}+\frac 1{3n^2}-...)## and ##n.e^{n\ln(1+\frac1n)}=n.e(1-\frac1{2n}+\frac 1{3n^2}-...)##

##\lim_{n \to \infty}(n.e^{n\ln(1+\frac1n)}-n.e)=n.e(1-\frac1{2n}+\frac 1{3n^2}-...)-n.e=-\frac e2+\frac e{3n}+...##

##\lim_{n \to \infty}(n.e^{n\ln(1+\frac1n)}-n.e)=-\frac e2 ##
 
Last edited:
Physics news on Phys.org
  • #2
What about my solution?
 
  • #3
littlemathquark said:
What about my solution?
I didn't check your work, but instead used Excel to approximate the limit. Your result seems about right to me.
 
  • #4
You can also use L'Hopital, with ##x## in place of ##n##.
 
  • #5
PeroK said:
You can also use L'Hopital, with ##x## in place of ##n##.
How? Because it's not ##\infty/\infty##, it's ##\infty-\infty##
 
  • #6
littlemathquark said:
How? Because it's not ##\infty/\infty##, it's ##\infty-\infty##
Make the ##n## in the numerator ##\frac 1 n## on the denominator.
 
  • Like
Likes MatinSAR

Similar threads

Back
Top