- #1
littlemathquark
- 37
- 10
- Homework Statement
- Find ##\lim_{x \to0} \left(\dfrac{1}{\sin^2 x}-\dfrac{1}{x^2}\right)##
- Relevant Equations
- ##\lim_{x \to0} \left(\dfrac{1}{\sin^2 x}-\dfrac{1}{x^2}\right)##
My solution is:
Let ##\lim_{ x \to 0}\left(\dfrac {1}{\sin^2x}-\dfrac1{x^2}\right)=L##
Let ##x=2y##
##\lim_{ y \to 0}\left(\dfrac {1}{\sin^22y}-\dfrac1{4y^2}\right)=\lim_{ y \to 0}\left(\dfrac1{4\sin^2y\cdot\cos^2y}-\dfrac1{4y^2}\right)=L##
##=\dfrac14\lim_{ y \to 0}\left(\dfrac1{\cos^2{y}}+\dfrac1{\sin^2{y}}-\dfrac1{y^2}\right)=\dfrac14+\dfrac{L}{4}=L##
##L=\dfrac13##
But I think I must show that firstly this limit L is a infinity number but I don't know how. Please help.
Let ##\lim_{ x \to 0}\left(\dfrac {1}{\sin^2x}-\dfrac1{x^2}\right)=L##
Let ##x=2y##
##\lim_{ y \to 0}\left(\dfrac {1}{\sin^22y}-\dfrac1{4y^2}\right)=\lim_{ y \to 0}\left(\dfrac1{4\sin^2y\cdot\cos^2y}-\dfrac1{4y^2}\right)=L##
##=\dfrac14\lim_{ y \to 0}\left(\dfrac1{\cos^2{y}}+\dfrac1{\sin^2{y}}-\dfrac1{y^2}\right)=\dfrac14+\dfrac{L}{4}=L##
##L=\dfrac13##
But I think I must show that firstly this limit L is a infinity number but I don't know how. Please help.