- #1
songoku
- 2,384
- 351
- Homework Statement
- Please see below
- Relevant Equations
- Limit
Integration
My attempt:
(a)
I don't think I completely understand the question. By "evaluate ##\lim_{n\to \infty f_n (x)}##", does the question ask in numerical value or in terms of ##x##?
As ##x## approaches 1 or -1, the value of ##f_n (x)## approaches zero. As ##x## approaches zero, the value of ##f_n (x)## approaches ##\frac{n+1}{2}## so if ##n \to \infty##, then ##f_n (0) \to \infty##.
There would be a certain value of ##x \in [-1,1]## where ##\lim_{n\to \infty} f_n (x)=\infty## so the limit does not exist.
Does it make any sense?(b)
$$\lim_{n\to \infty} \int_{-1}^{1} f_n (x) dx$$
$$=\lim_{n\to \infty} \int_{-1}^{1} \frac{n+1}{2} (1-|x|)^n dx$$
$$=\lim_{n\to \infty} \frac{n+1}{2} \int_{-1}^{1} (1-x)^n dx$$
$$=\lim_{n\to \infty} \frac{n+1}{2} \left[-\frac{1}{n+1} (1-x)^{n+1}\right]^{1}_{-1} dx$$
$$=\lim_{n\to \infty} (2)^n$$
The limit does not converge so it does not exist. Is this correct?
Thanks
Edit: wait, I realize my mistake for (b). I will revise it in post#2
Last edited: