- #1
tmt1
- 234
- 0
The limit comparison test states that if $a_n$ and $b_n$ are both positive and $L = \lim_{{n}\to{\infty} } \frac{a_n}{b_n} > 0$ then $\sum_{}^{} a_n$ will converge if $\sum_{}^{} b_n$ and $\sum_{}^{} a_n$ will diverge if $\sum_{}^{} b_n$ diverges. Does this rule also apply if $L$ diverges to infinity?